

Means & Methods for Metering Low Temperature Thermal Energy

Presenter: Connor Dacquay, P.E., GEOptimize

DESIGN TRACK - CEU CREDIT ELIGIBLE - 9:30 AM

Means & Methods for Metering Low Temperature Thermal Energy

Connor Dacquay, Dr. Eng, PE, CGD

connor@geoptimize.ca

1-204-996-8133

Overview

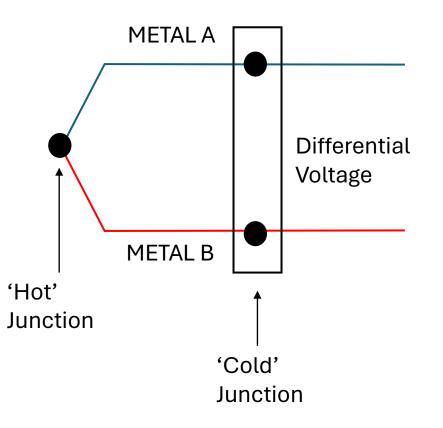
- 1. Hardware
- 2. Standards & Regulations
- 3. Software
- 4. Geothermal Energy as a Service (EaaS)

Learning Objectives

- 1. Learn how to measure a Btu
- 2. Understand factory and onsite calibration
- 3. Understand differences in a connection fee and consumption fee

British Thermal Unit (Btu)

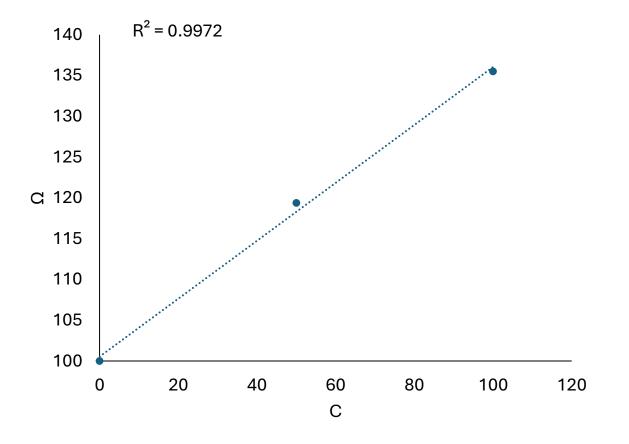
- $Q = c_p * M * \Delta T$
 - Q heating or cooling capacity(Btu/hr)
 - c_p specific heat of fluid (Btu/lb/°F)
 - M mass of fluid per time (GPM)
 - ΔT temperature difference between entering and leaving fluid (°F)


Temperature Sensors

- Thermocouple
- Resistance temperature detector (RTD)
- Thermistor

Thermocouple

- Wide temperature range
- Rugged & durable
- Low cost
- Quick response
- Cons
 - Lower accuracy (+/- 0.5 2°F)
 - Nonlinearity
 - Drift over time


Resistance Temperature Detector (RTD)

• Pros

- High accuracy (+/- 0.055 0.5°F)
- Linearity
- Repeatability

Cons

- Narrow temperature range
- Slower response time
- Fragility
- Higher cost

Flow Meters

- Ultrasonic
- Venturi
- Magnetic
- Turbine
- Oscillating Jet
- Vortex

NY-GEO

Ultrasonic – Spool

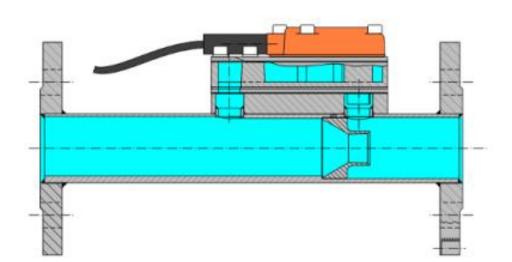
- No pressure drop
- Reliability
- High accuracy (0.5% 1%)
- Cons
 - Cost
 - Sensitivity to fluid characteristics
 - Pipe condition and installation environment

Ultrasonic – Clamp-on

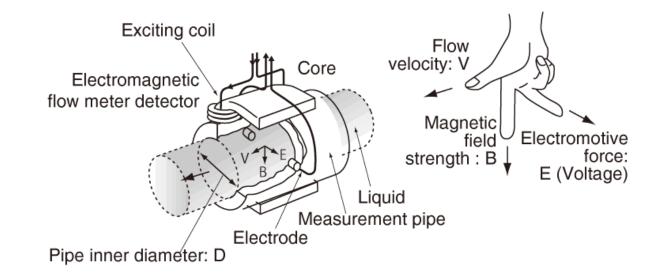
• Pros

- Nonintrusive
- Easy installation
- Low cost for large diameter pipe

• Cons


- Lower accuracy (1% 5%)
- Require ultrasonic couplant
- Pipe condition and installation environment

Venturi


- No moving parts
- High reliability and low maintenance
- Durability
- Higher accuracy (0.5% 1.5%)
- Cons
 - Intrusive
 - Cost
 - Pressure drop

Magnetic

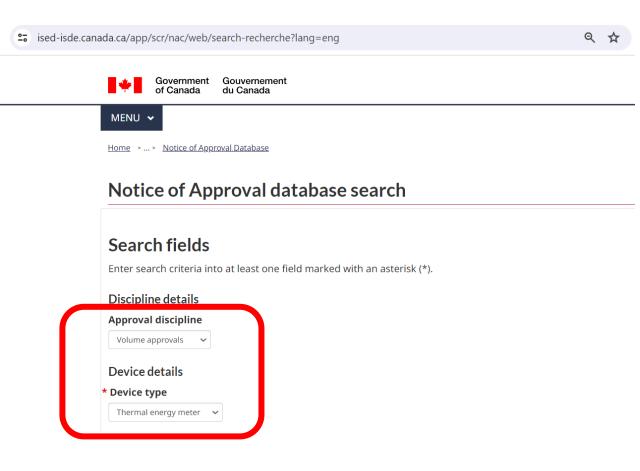
- No moving parts
- High reliability and low maintenance
- Higher accuracy (0.5% 2%)
- Cons
 - Intrusive
 - Cost

Turbine

- Direct measurement of flow velocity
- Simple design
- Higher accuracy (0.5% 1%)
- Cons
 - Intrusive
 - Cost
 - Moving parts
 - Pressure drop

European Standard EN1434

- CEN is the European Committee for Standardization
- EN1434 specifies requirements and test methods for "heat meters"
- Ensures the accuracy, reliability and compatibility of heat metering devices across Europe
- Created in 1997



estines canada - Measurennent canada

- Government of Canada agency
- Primary mandate is to ensure the integrity and accuracy of measurement in the Canadian marketplace
- Regulates and enforces the accuracy of water, natural gas, electricity and Btu meters
- USA equivalent is National Institute of Standards & Technology (NIST)

- New thermal energy (Btu) meter division
- Currently 20 approved thermal energy meters
- Using an approved meter allows for legal trade of commodity
- A thermal energy meter for commercial use must be Class 1 or 2

Q/A

- Acceptance limits are the sum of error for each sub-assembly
- Total error based on the measurement equipment and test parameters

• Error =
$$Ef + Et + Ec$$

• $Ef = \left(2 + 0.02 \frac{qp}{q}\right)$
• $Et = \left(\frac{0.5 + 3\Delta\theta min}{\Delta\theta}\right)$
• $Ec = \left(\frac{0.5 + \Delta\theta min}{\Delta\theta}\right)$

• Typical total error +/- 2% - 4%

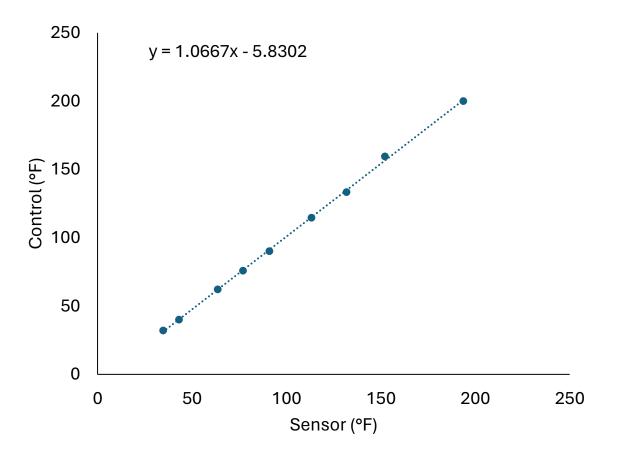
Innovation, Science and Economic Development Canada Messurement Canada	Innovation, Sciences et Développement économiqu Mesures Canada	ue Canada	APPROVAL No Nº D'APPROBATION AV-2483C			
NOTICE OF CONDITIONAL A	PPROVAL	AVIS D'APPROBA	TION CONDITIONNELLE			
Issued by statutory authority of Industry (styled Innovation, Scien Development) for the following dev	ce and Economic	Émis en vertu du pouvoir statutaire du ministre de l'industrie (dénommé Innovation, Sciences et Développement économique) pour le(s) modèle(s) d'instrument suivant(s):				
TYPE OF DEVIC	E	TYPE I)'APPAREIL			
Thermal Energy Me	ter	Compteur d'énergie thermique				
APPLICANT		REQ	UÉRANT			
	ONICON 11451 Belcher Roa Florida 337	ad South, Largo				
MANUFACTUR	ER	FABRICANT				
	ONICON 11451 Belcher Roa Florida 337	ad South, Largo				
	MODEL(S) N	MODÈLE(S)				
		M-22				

Acceptance Tolerances

- Natural gas meters +/- 1.5%
- Water meters +/- 1.5%
- Electricity meters
 - Maintenance +/- 2%
 - Acceptance +/- 1%

NIST Handbook NIST HB 44-2023 Specifications, Tolerances, and **Other Technical Requirements for** Weighing and Measuring Devices as adopted by the 107th National Conference on Weights and Measures Tina G. Butcher Richard A. Harshman Jan Konijnenburg G. Diane Lee Juana S. Williams Lisa Warfield Elizabeth J. Benham Shelby L. Bowers Katrice A. Lippa This publication is available free of charge from: https://doi.org/10.6028/NIST.HB.44-2023 NIST Handbook 442023 Edition

Factory Calibration

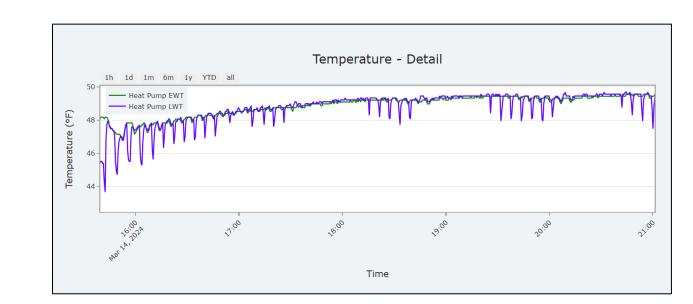

- After Measurement Canada has approved a Btu meter, the manufacturer must prove each device has been calibrated to the standard
- Devices often have a higher accuracy than the minimum acceptable tolerance
- Calibration certificates come with every Btu meter ordered

Hac-M	······································	DANA AL Reg No. 264	<	kamstrup							
	ATION C	ERTIFIC	ATE								
AC603	1212012 121228	193									
ertificate No.:	: 268-055-0000	105									
ddress:	Kamstrup A/S Industrivej 28 8660 Skanderb	org DENMARK	:								
lake: Kamstru	ıp A/S			A	mbient temp.:	23 °C ± 5 °C					
ype: 603E215	70000000			MDIR: EN 1434							
erial No.: 800	10870			Date of calibration: 2017-09-06							
rog. No.: 448	072100024241	22951030000		c	alibrated by: A	СН					
Test	True T inlet	True T Outlet	True V	True E	Measured E	Error	Uncer- tainty	MPE			
	[°C]	[°C]	[1]	[Wh]	[Wh]	[%]	[±%]	[±%]			
1	44,04	40,75	1.000,00	3.780,75	3.781,40	0,02	0,25	1,41			
	79,30	65,03	1.000,00	16.287,30	16.288,20	0,01	0,09	0,71			
2		20,02	1.000,00	163.417,52	163.477,60	0,04	0,02	0,52			
10.03	159,62							1,41			
2	159,62 15,09	18,39	1.000,00	3.824,46	3.832,80	0,22	0,24				
2 3		18,39 20,02	1.000,00 1.000,00	3.824,46 16.257,78	3.832,80 16.254,10	0,22 -0,02	0,24 0,09	0,71			

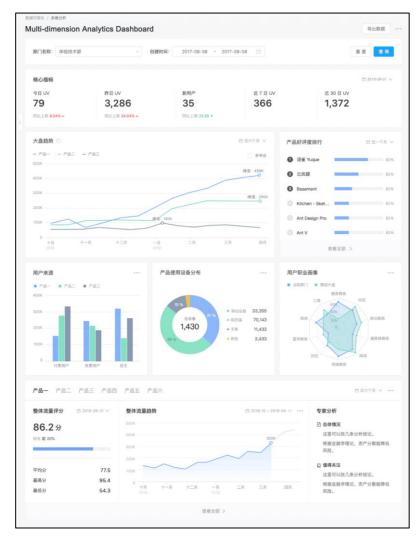
On-Site Recalibration

- Measure against a high accuracy control
- Ensure stable conditions
- Various measurements across the temperature and flow range
- Readings taken at the same time
- Frequency is dependent on application

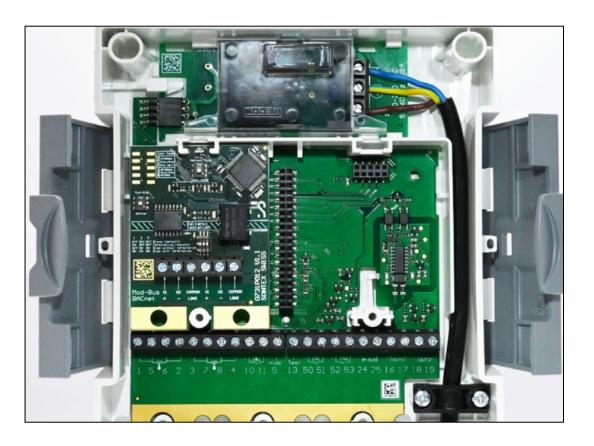
Calibration in Other Industries

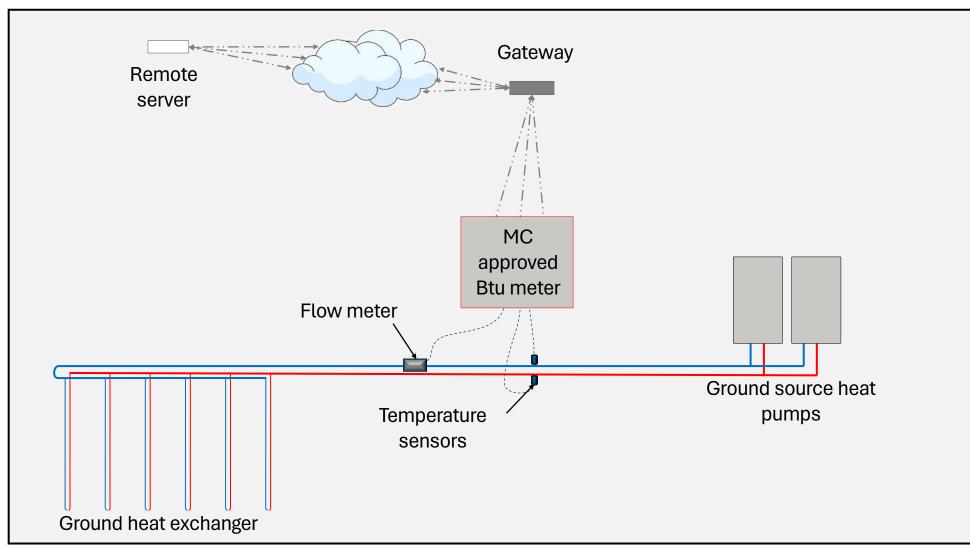

- Aerospace
- Hospitals
- Nuclear power
- Pharmaceuticals
- Biotechnology
- Industrial processes

Small **ΔT** Considerations

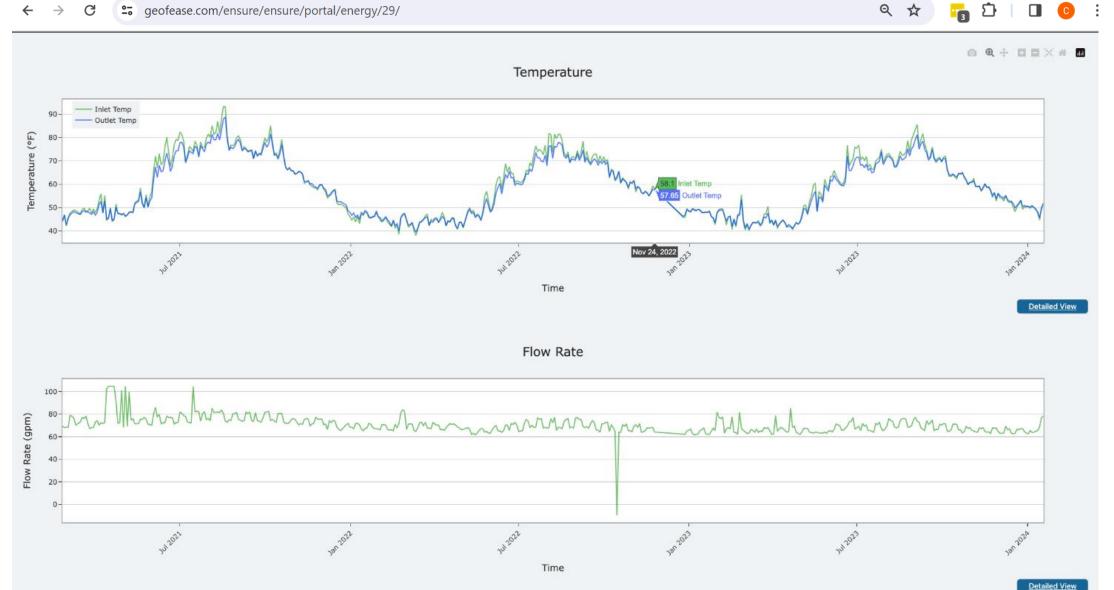

- Thoughtful pumping strategies
- Calibration of temperature sensors
- For low load and small ΔT situation apply fixed fee past a certain threshold

Hardware vs. Software


- Local storage limitations with physical Btu meters
- Software is needed for:
 - Long term data collection
 - Data organization and analysis
 - Graphical interpretation


Communication Interfaces

- BACnet and MODBUS are communication protocols
- MS/TP is for BACnet and RTU is for MODBUS
- Ethernet, RS232, and RS485 are communication methods for physical connection
- Wi-Fi enabled for wireless communication method



Communication Interfaces

25 geofease.com/ensure/ensure/portal/energy/29/ ← \rightarrow G

CI I Ċ С :

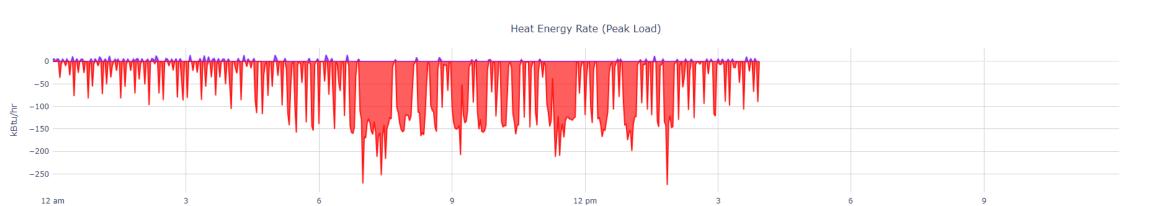
 \leftarrow

 \rightarrow

옥 🖈 晴 한 🗆 💽 🗄

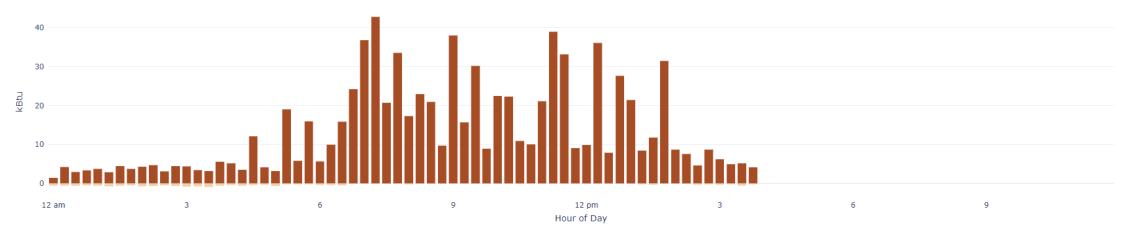
C geofease.com/ensure/ensure/portal/energy/29/

gf							Hom	e Products -	Fease - Co	nnect - Ensi	ure - Mavens	 New Post 	Profile	Logout			
3 - CA ON	Cambrian Co	ollege - Ensi	ire 3 - CA ON	Cambrian Colle	ege - Ensure												
🛧 Home	🗲 Energy	🛱 Loads	2 Prediction	Controls	🌣 Settings	皆 Summary											
										Ene	rgy						
									< March		2024 🗸	> Go					
									Day Wee	k Month (Quarter Year	Lifetime					
								-	— Inlet Temp —	-	ratures — Flow Rate	Cooling 💻 Heat	ting				
46 44 44 42 40 12		MM	JVV JV 3		MAY	e e	MUNT	у Мр. 9	MAN	12 ;	Jm		3		5	9	
										Flow	Rate						
40		MV7JMV	-W1MV		VL _W W	MML/W	NWV-MWV	MM	MMN/NL								
12	am		ک			0		а		12	רדונ		3		0	2	



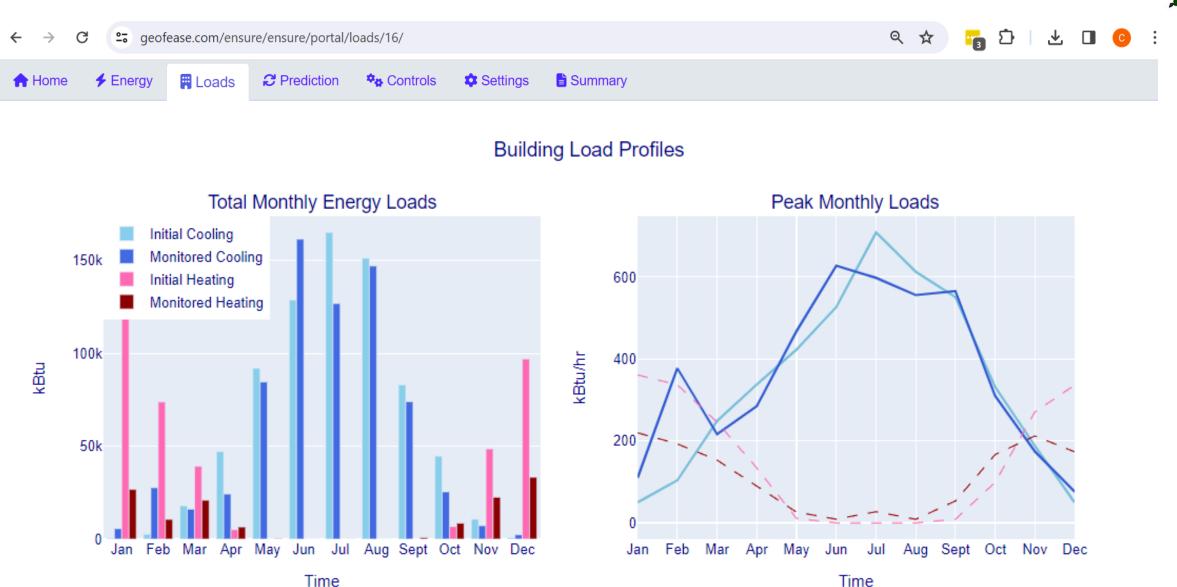
२ 🕁

Ð


3

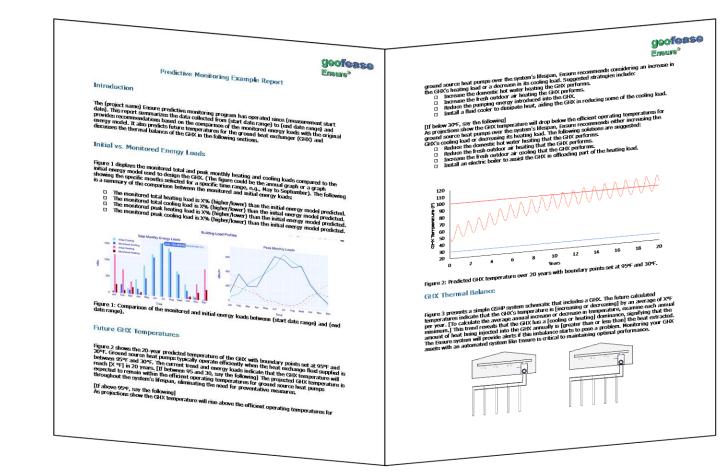
← → C (25 geofease.com/ensure/ensure/portal/energy/29/

Total Energy Over Time (Total Load)


📕 Heating kBtu from GHX 📒 Cooling kBtu from GHX

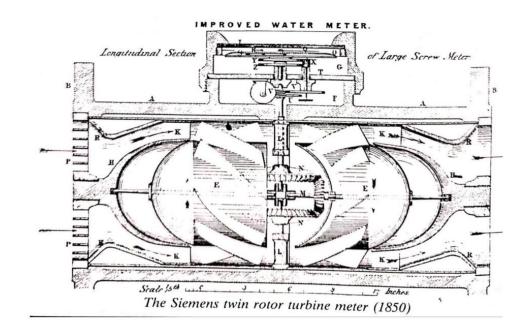
$\leftarrow \rightarrow G$	geofease.com/ensure	晴 🖸 1 🛃 🖸 😳 🗄					
12 am	3	6	9	12 pm Hour of Day	3	6	9

	Energy Information		
Description	Interval	Start	End
Time Period	Day	00:00	23:59
	Minimum	Maximum	Average
Heat Pumps			
Inlet Temperature (°F)	44.3	48.7	46.9
Outlet Temperature (°F)	41.3	48.8	45.9
Delta T (°F)	-4.5	0.2	-1.0
Flow Rate (gpm)	25.5	131.9	104.3
Loads			
Cooling Peak (kBtu/hr)	0.0	14.8	1.2
Heating Peak (kBtu/hr)	0.0	274.8	53.0
Cooling Total (kBtu)	0.0	0.9	0.3
Heating Total (kBtu)	1.5	42.8	13.4



	Prediction Results	
Prediction Time	240 months	
Predicted Inlet Temperatures	Minimum	Maximum
Initial	35.2 °F	99.2 °F
Monitored	45.0 °F	74.1 °F

- Automated reports for all
 - stakeholders
 - Billing information summary
 - Summary of GHX performance
 - Recommendations for optimized operation



Q/A

History of Water Measurement

- First recorded use of a water meter was in the 1850s
- First widespread installation of water meters for billing began in late 19th century in Europe
- Connection fee vs. consumption fee

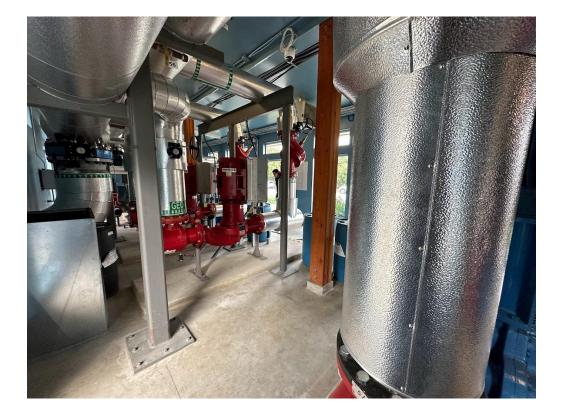
Geothermal Energy as a Service (EaaS)

Whisper Valley, TX, USA

- 400+ homes with Enertech heat pumps
- 300 ft vertical boreholes
- 4 separate ambient loop systems
- Auxiliary cooling towers
- Future phases planned

Richmond, BC, Canada

- 4 vertical GHX fields
- 2.2 miles of 20" supply/return lines
- 3 back-up natural gas boilers
- 2 back-up cooling towers
- 1,900,000 ft² of residential GFA
- 300,000 ft² of non-residential GFA



Richmond, BC, Canada

- Connection fee: 9.56 c/ft^2 of GFA
- Consumption fee: 0.7 ¢/kBtu
- Excess demand fee:
 - Btu/hr > 20.46 Btu/hr/ft² = 62.7 ¢/Btu/hr/ft²
 - Baseline space heating/cooling and domestic hot water determined by an energy model

Geothermal EaaS New Ideas

- Connection fee + "surge-type pricing"
 - Heating and cooling dynamic billing based on GHX trend
- Beeting dominate district loop
 - Heating 20 ¢/Btu
 - Cooling **20** ¢/Btu

Learning Objectives Q/A

What are the two types of sensors needed to measure Btu's?

• Temperature sensors and flow meters

What is the difference between factory and onsite calibration?

- Factory calibration occurs from the manufacturer when a device is created
- Onsite calibration occurs onsite periodically to eliminate sensor drift errors

What is the difference between a connection fee and consumption fee?

 Connection fee is a fixed fee for the service connection and a consumption fee is variable based on usage

Thank You!

- Connor Dacquay, Dr. Eng, PE, CGD
- 1-204-996-8133
- <u>connor@geoptimize.ca</u>

Means & Methods for Metering Low Temperature Thermal Energy

Presenter: Connor Dacquay, P.E., GEOptimize

DESIGN TRACK - CEU CREDIT ELIGIBLE - 9:30 AM