

Peak Demand Comparison: ASHP, CCHP, & GSHP

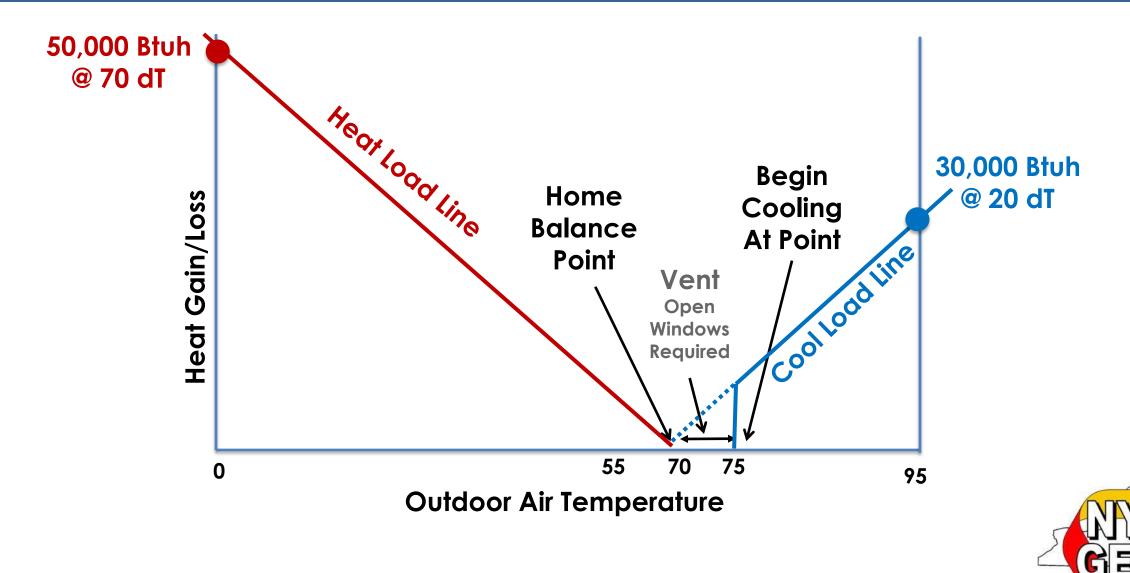
Speaker:

Bob Brown / WaterFurnace International

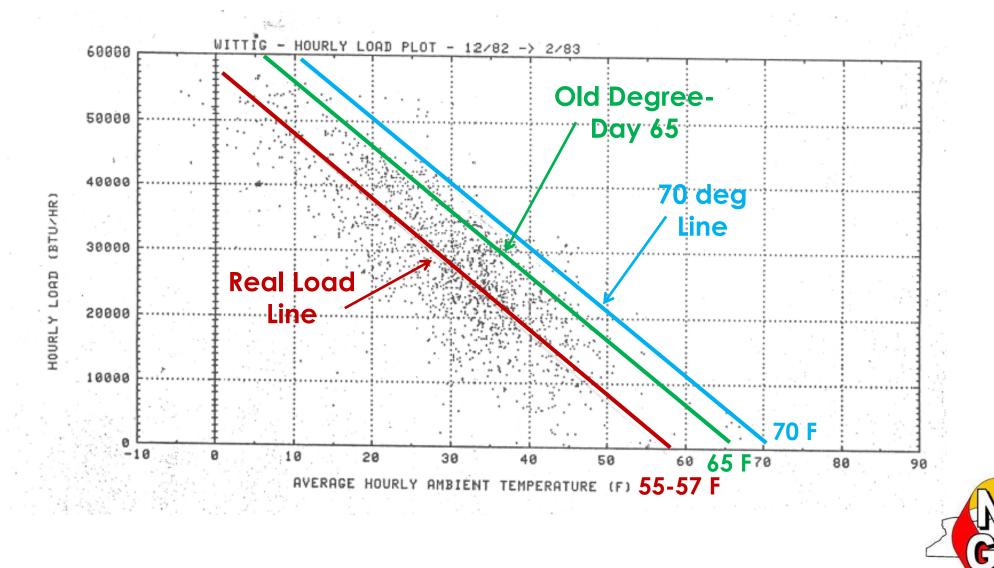
HEAT PUMPS & THE GRID • ROOM M2B • 10:30-11:30 AM

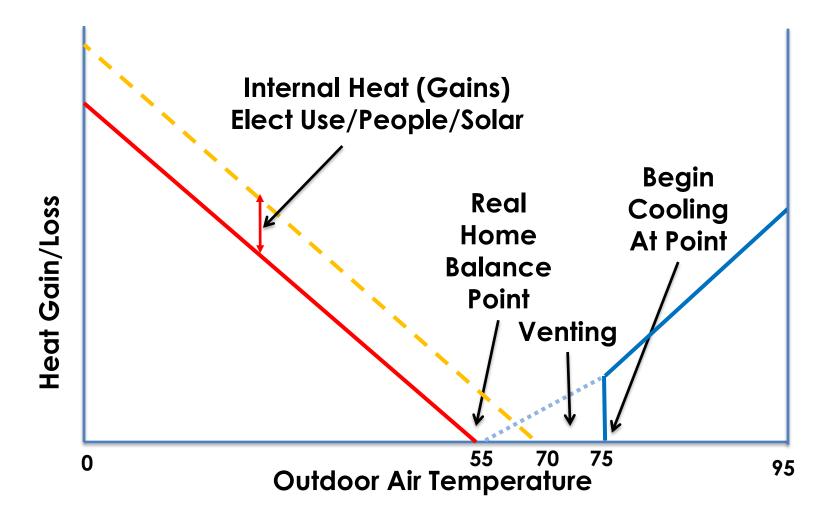
Heat Pump Sizing and Peak Demand Comparison

Bob Brown VP of Engineering and Regulatory Affairs

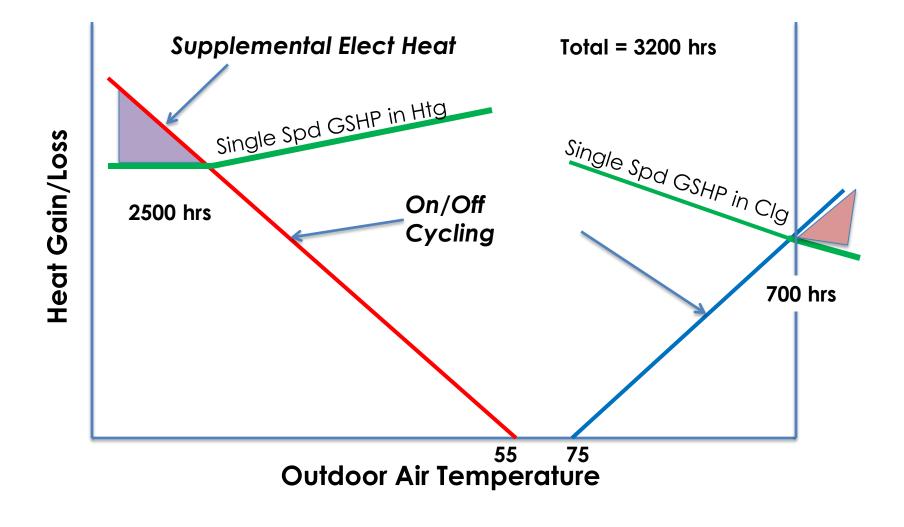

2025 NY GEO SARATOGA SPRINGS, NEW YORK

GSHP, ASHP and CCHP Peak Demand Importance

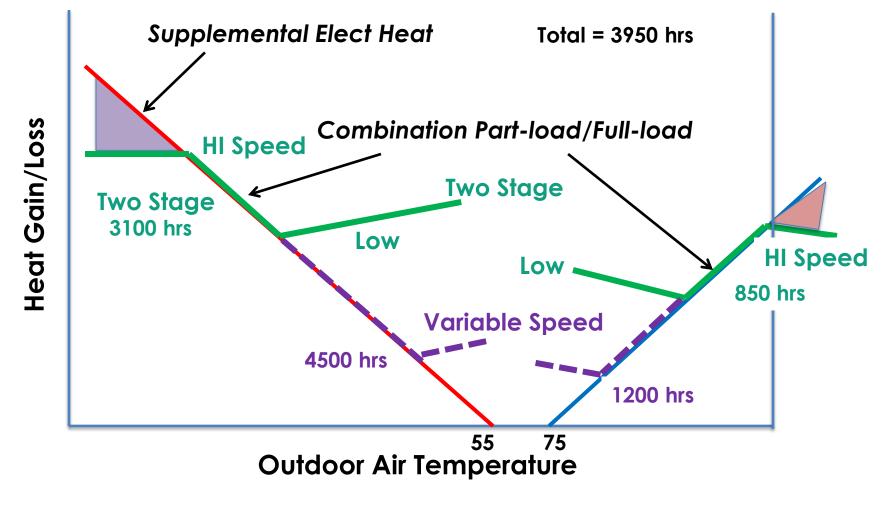

- With the renewed interest in decarbonization and ultimately the replacement of gas appliances with heat pumps, the utility industry is once again very interested in peak demand.
- Most of the current emphasis is on cooling peak demand loads since currently the vast majority of electric utilities are all summer peaking, however it is estimated that some northern utilities will revert to winter peaking within 2-3 years, with others to follow.
- Decarbonization and winter peaking utilities will put the spotlight on sizing HP's for heating and the choice for auxiliary supplemental heat source.


Some Basics First - Typical House Load Basics

Measured Heating Load Hours – GE Study 1982-83

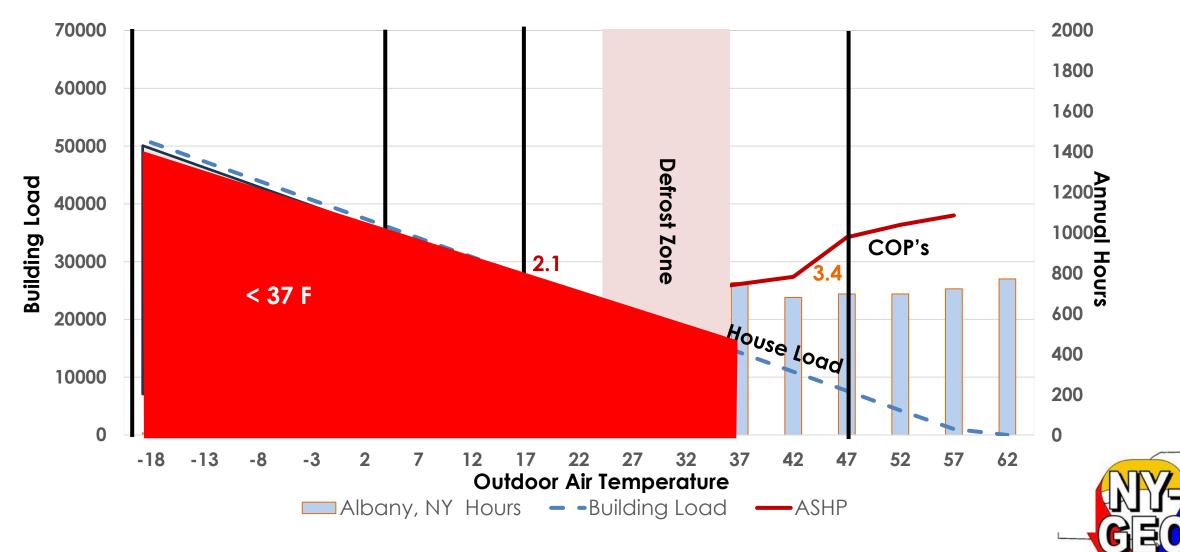


New Typical House Real Load w/ Internal Gains



Typical Single Stage System

Typical Two Stage and Variable Speed System



ASHP Sizing Basics – Historical Perspective

- Historical ASHP's
 - Typically sized for cooling
 - Predominately central to southern product applications
 - Historically most have been 'locked out' below 37 degF
 - To limit operation in defrost and improve reliability
 - Elect heat or gas furnace backup has been 'heavy lifter' for heating in cold climates.
 - Old school practice is disappearing
 - THIS IS CHANGING! Decarbonization is relying on HP's for all heating. Some utilities and mfrs have renewed interest in dual fuel to limit electric heat use in cold temps but it counters decarb trends.

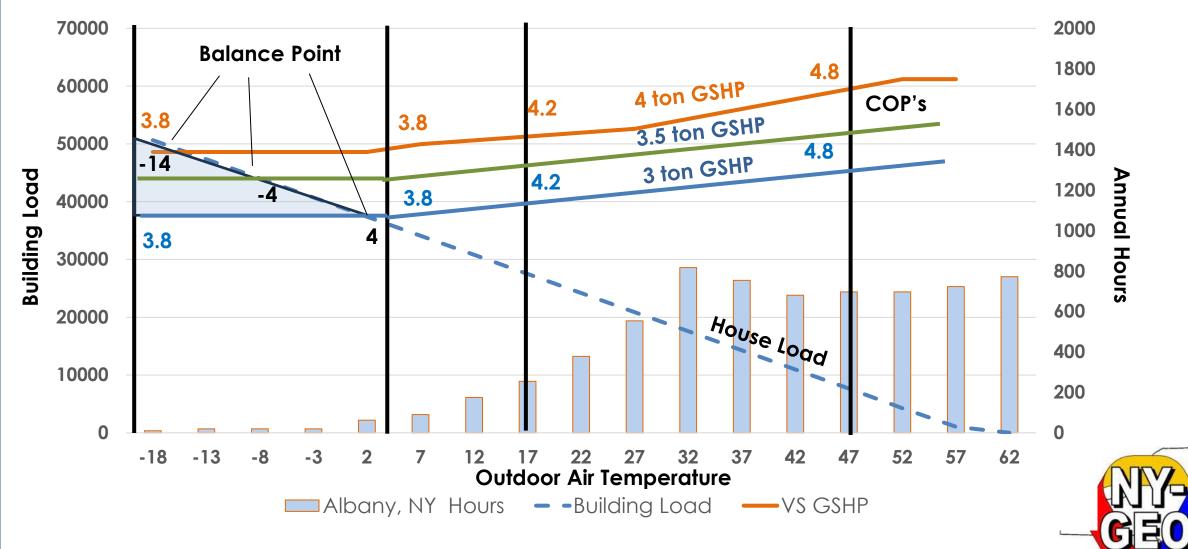
Air Source Heat Pump Sizing

GSHP Sizing History

Historical Economic Sizing

Sized for heating with a balance point just below lowest significant hour bin (5-10 degF in New York).

- Retains good cooling dehumidification with slightly smaller sizing (important when single stage equip was norm)
- Minimal backup heat (<10% of total heating) would be only \$20-40 per year
- Most economical since it offsets an extra ½-1 ton of equipment and loop. Avoids additional costs totaling more than \$3-5k for loop and equipment.

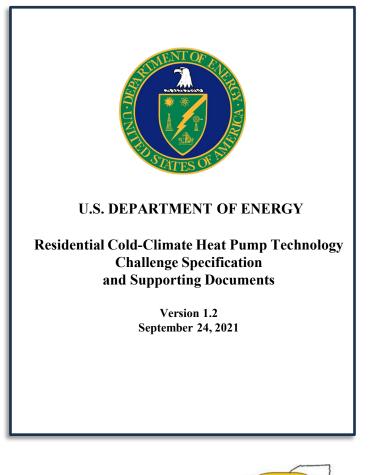

• Full heating sizing

Full heating or no aux heat has been a requirement for rebates by several utilities/REC's for years.

- This was instigated to limit winter peak demand and no aux elect heat operation.
- This concept goes back to the utility "peak demand" emphasis in the '90's when several prominent utilities and REC's were still winter peaking.
- This will probably need to be the norm in the future for GSHP's.

3, 3.5 and 4 ton GSHP Heat Pump Sizing

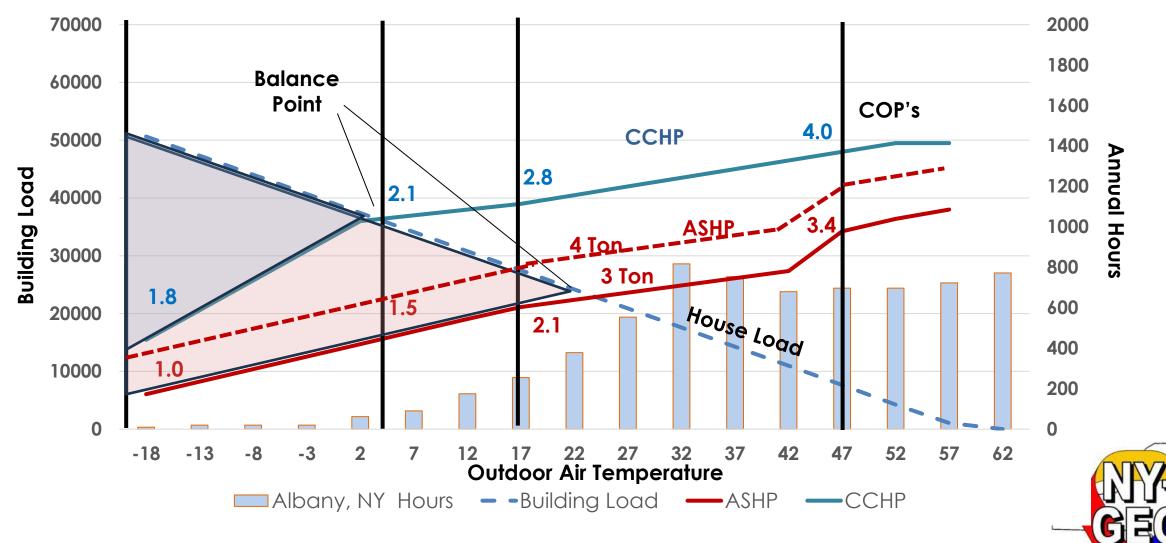
NEW Cold Climate Heat Pump (CCHP)


- New Air Source Heat Pump design for Cold North American Markets.
- New Technology
 - Oversized Vapor-Injected Variable Speed Compressor
 - Complex Compressor Speed Management
 - COP of 1.8 at -15 degF [-25 degC] vs todays ASHP COP of 1.0
- New CCHP regulations under development are targeting northern US and Canadian Markets Pushed heavily by utilities and decarbonization NGO's.
- Early Market had some lofty claims but standards are "catching up".

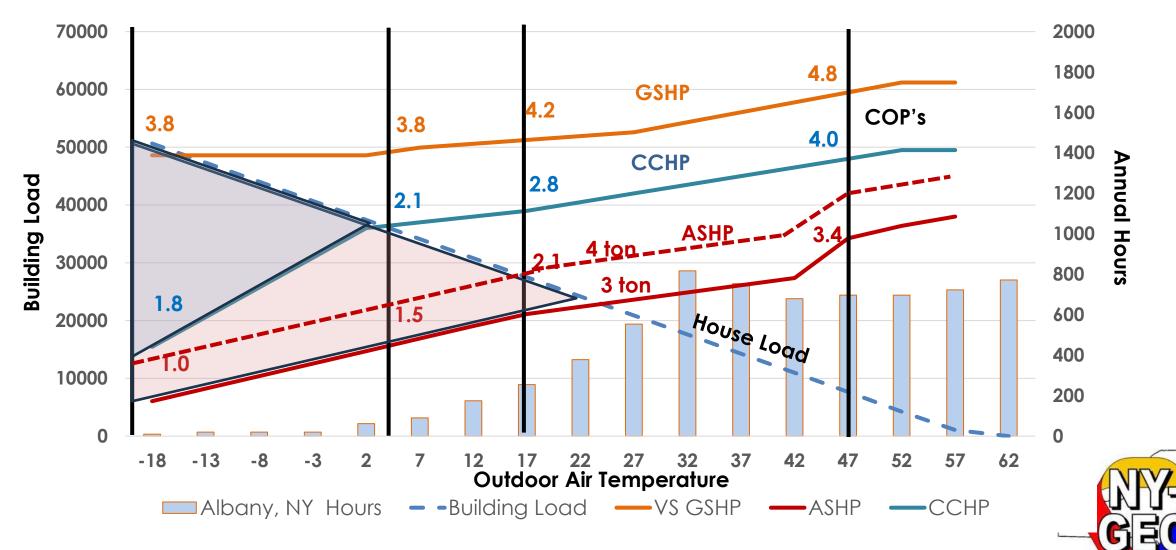
DOE Launched CCHP Challenge and Specification

- DOE launched a CCHP challenge spec in 2021
 - Min 47 F Cap no higher than 70% of max 47 F
 - Htg Cap at 5 F > 70% of 47 F Htg Cap
 - Min COP at 5 F of 1.8
 - Min of 8.5 HSPF2 Region V using M1
 - Max of 5 kW per EH stages
 - Heating Performance at 5 F (2.4/2.1 COP)
 - Cut off Temp <-10 to -15 F</p>
 - Low GWP Refrigerant
 - Cloud Connected Product

ASHP, CCHP and GSHP Heat Pump Details


• ASHP

- 4 ton, 2 stage, 16 SEER2, with EH


- CCHP
 - 4 ton New Market Data of VS CCHP with EH
- GSHP
 - VS GSHP, 40 EER, 5 COP (GLHP) with EH

ASHP and CCHP Sizing

Combined Heat Pump Comparison

- ASHP and CCHP AHRI 210-240 moving to AHRI 1600
 - CCHP becoming more defined
 - AHRI 1600 has COP Peak defined
 - DOE Final Rulemaking of AHRI 1600 in limbo
- GSHP ISO/AHRI 13256-1 going to AHRI 600
 - Commercial IEER and ACOP with system and pump power included
 - Residential (development) will mimic 1600 and SHORE/SCORE
 - Planned include Peak Demand and COP/EER at 5 and 95 F OAT
 - DOE Final Rulemaking of AHRI 600 in limbo

AHRI 1600 and 600 Bin Example – Heating – SHORE Replaces HSPF2

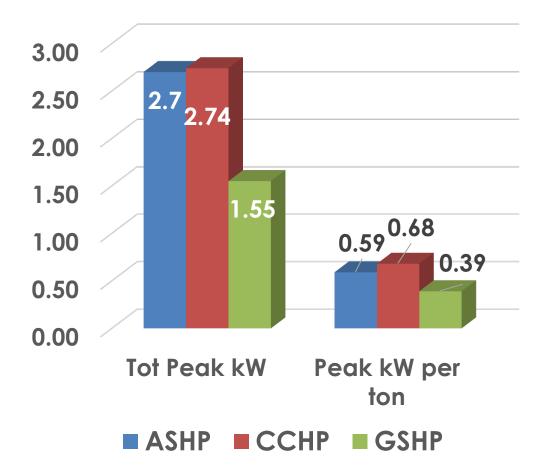
16	37.5	51.8	476	8	15899	37348	2316	4.73	50620	3136				Ht	g Peak	Demand	3.1	Bk₩
															_			
17	32.5	50.3	410	0	20441	36627	2311	4.65	49753	3122	C _D H,	Leu 🗌	0.07	K= No	te: If Co	<mark>ዜ እ በ 2</mark> 5	then w	se default 0.
18	27.5	48.7	239	0	24984	35906	2306	4.56	48886	3109			0.07	< = MO	te: IF GC	1 2 0.23), (nen U	se derauit U.
	21.0			0		35185	2300	4.48	48019	3095	C D ^{H.}	F=11	0.07					
	00.5			0			2301	4.48	48019	3035	L CD .		0.01					
19	22.5	47.2	137	0	29526													
	22.5 17.5			0 0	29526 34069	34464	2295	4.40	47152	3081			Nl⇒t	$l \in \mathbf{F}_{n}$	tor Nat.	or CC		
19		47.2	137						47152 46284		Regi	on	Nat	<= En	ter Nat 🛛	or CC.		
19 20	17.5	47.2 45.6	137 80	0	34069	34464	2295	4.40		3081		on	Nat	≺= En	ter Nat	or CC.		
19 20 21 22	17.5 12.5 7.5	47.2 45.6 44.1 42.5	137 80 44 28	0 0 0	34069 38611 43154	34464 33742 33021	2295 2290 2285	4.40 4.32 4.24	46284 45417	3081 3067 3054	Regi			<= En			N/A	100
19 20 21 22 23	17.5 12.5 7.5 2.5	47.2 45.6 44.1 42.5 41.0	137 80 44 28 16	0 0 0 0	34069 38611 43154 47696	34464 33742 33021 32300	2295 2290 2285 2280	4.40 4.32 4.24 4.15	46284 45417 44550	3081 3067 3054 3040	Regi 4.30	N/A	N/A	<= Enl	N/A	N/A	N/A	1.00
19 20 21 22 23 24	17.5 12.5 7.5 2.5 -2.5	47.2 45.6 44.1 42.5 41.0 41.0	137 80 44 28 16 9	0 0 0 0	34069 38611 43154 47696 52239	34464 33742 33021 32300 32300	2295 2290 2285 2280 2280	4.40 4.32 4.24 4.15 4.15	46284 45417 44550 44550	3081 3067 3054 3040 3040	Regi 4.30 4.30	N/A N/A	N/A N/A	<= En!	N/A N/A	N/A N/A	N/A	1.00
19 20 21 22 23 24 25	17.5 12.5 7.5 2.5 -2.5 -7.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0	137 80 44 28 16 9 2	0 0 0 0 0	34069 38611 43154 47696 52239 56781	34464 33742 33021 32300 32300 32300	2295 2290 2285 2280 2280 2280	4.40 4.32 4.24 4.15 4.15 4.15 4.15	46284 45417 44550 44550 44550	3081 3067 3054 3040 3040 3040	Regi 4.30 4.30 4.30	N/A N/A N/A	N/A N/A N/A	<= En!	N/A N/A N/A	N/A N/A N/A	N/A N/A	1.00 1.00
19 20 21 22 23 24	17.5 12.5 7.5 2.5 -2.5	47.2 45.6 44.1 42.5 41.0 41.0	137 80 44 28 16 9	0 0 0 0	34069 38611 43154 47696 52239	34464 33742 33021 32300 32300	2295 2290 2285 2280 2280	4.40 4.32 4.24 4.15 4.15	46284 45417 44550 44550	3081 3067 3054 3040 3040	Regi 4.30 4.30	N/A N/A	N/A N/A	<= Eni	N/A N/A	N/A N/A	N/A	1.00
19 20 21 22 23 24 25	17.5 12.5 7.5 2.5 -2.5 -7.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0	137 80 44 28 16 9 2	0 0 0 0 0	34069 38611 43154 47696 52239 56781	34464 33742 33021 32300 32300 32300	2295 2290 2285 2280 2280 2280	4.40 4.32 4.24 4.15 4.15 4.15 4.15	46284 45417 44550 44550 44550	3081 3067 3054 3040 3040 3040	Regi 4.30 4.30 4.30	N/A N/A N/A	N/A N/A N/A	<= Eni	N/A N/A N/A	N/A N/A N/A	N/A N/A	1.00 1.00
19 20 21 22 23 24 25 26	17.5 12.5 7.5 2.5 -2.5 -7.5 -12.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1	0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324	34464 33742 33021 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15	46284 45417 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30	N/A N/A N/A N/A	N/A N/A N/A N/A	K= Eni	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	1.00 1.00 1.00
19 20 21 22 23 24 25 26 27 28	17.5 12.5 7.5 2.5 -2.5 -7.5 -12.5 -17.5 -12.5 -17.5 -22.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1 0 0	0 0 0 0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324 65866 70409	34464 33742 33021 32300 32300 32300 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280 2280 228	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15 4.15 4.15	46284 45417 44550 44550 44550 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30 4.30 4.30	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	K= Eni	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	1.00 1.00 1.00 1.00 1.00
19 20 21 22 23 24 25 26 27 28 29	17.5 12.5 7.5 2.5 -2.5 -7.5 -12.5 -12.5 -17.5 -22.5 -27.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1 0	0 0 0 0 0 0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324 65866	34464 33742 33021 32300 32300 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280 2280	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.1	46284 45417 44550 44550 44550 44550 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30 4.30 4.30 4.30	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<= Eni	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	1.00 1.00 1.00 1.00 1.00 1.00 1.00
19 20 21 22 23 24 25 26 27 28	17.5 12.5 7.5 2.5 -2.5 -7.5 -12.5 -17.5 -12.5 -17.5 -22.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1 0 0	0 0 0 0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324 65866 70409	34464 33742 33021 32300 32300 32300 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280 2280 228	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15 4.15 4.15	46284 45417 44550 44550 44550 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30 4.30 4.30	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	<= Eni	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	1.00 1.00 1.00 1.00 1.00
19 20 21 22 23 24 25 26 27 28 29	17.5 12.5 7.5 2.5 -2.5 -7.5 -12.5 -12.5 -17.5 -22.5 -27.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324 65866 70409 74951	34464 33742 33021 32300 32300 32300 32300 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280 2280 228	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.1	46284 45417 44550 44550 44550 44550 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30 4.30 4.30 4.30	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	<= Ent	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	1.00 1.00 1.00 1.00 1.00 1.00 1.00
19 20 21 22 23 24 25 26 27 28 29 30	17.5 12.5 7.5 -2.5 -7.5 -12.5 -17.5 -17.5 -22.5 -27.5 -32.5	47.2 45.6 44.1 42.5 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	137 80 44 28 16 9 2 2 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	34069 38611 43154 47696 52239 56781 61324 65866 70409 74951	34464 33742 33021 32300 32300 32300 32300 32300 32300 32300 32300	2295 2290 2285 2280 2280 2280 2280 2280 2280 228	4.40 4.32 4.24 4.15 4.15 4.15 4.15 4.15 4.15 4.15 4.1	46284 45417 44550 44550 44550 44550 44550 44550 44550 44550 44550	3081 3067 3054 3040 3040 3040 3040 3040 3040 3040	Regi 4.30 4.30 4.30 4.30 4.30 4.30 4.30 4.30	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A		N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	1.00 1.00 1.00 1.00 1.00 1.00 1.00

AHRI 1600 and 600 Bin Calculation – GSHP Heating

eak Demand	Bin Temp 5	Loop Temp 41.8			Load Line 45425				5 deg Cap 44984	Deg HP Powe 3.05	ſ		COP peak 4.33	System Pea 3.18
	Din Tonra	Loop Torre			Load Line				E dea Car				COD nach	Evotom Dec
30	-32.5	41.0	0	0	79494	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
29	-27.5	41.0	0	0	74951	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
28	-22.5	41.0	0	0	70409	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
27	-17.5	41.0	0	0	65866	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
26	-12.5	41.0	1	0	61324	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
25	-7.5	41.0	2	0	56781	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
24	-2.5	41.0	9	0	52239	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
23	2.5	41.0	16	0	47696	32300	2280	4.15	44550	3040	4.30	N/A	N/A	
22	7.5	42.5	28	0	43154	33021	2285	4.24	45417	3054	4.36	N/A	N/A	
21	12.5	44.1	44	0	38611	33742	2290	4.32	46284	3067	4.42	N/A	N/A	
20	17.5	45.6	80	0	34069	34464	2295	4.40	47152	3081	4.49	0.99	1.00	
19	22.5	47.2	137	0	29526	35185	2301	4.48	48019	3095	4.55	0.84	0.99	
18	27.5	48.7	239	0	24984	35906	2306	4.56	48886	3109	4.61	0.70	0.98	
17	32.5	50.3	410	0	20441	36627	2311	4.65	49753	3122	4.67	0.56	0.97	
16	37.5	51.8	476	8	15899	37348	2316	4.73	50620	3136	4.73	0.43	0.96	
15	42.5	53.4	523	38	11356	38070	2321	4.81	51487	3150	4.79	0.30	0.95	
14	47.5	54.9	499	106	6814	38791	2326	4.89	52355	3164	4.85	0.18	0.94	
13	52.5	56.5	414	272	3851	39512	2332	4.97	53222	3177	4.91	0.10	0.94	
12	57.5	58.0	253	496	889	40233	2337	5.05	54089	3191	4.97	0.02	0.93	
	t.	t _{j,Joop}	Ni	N _{sti}	BL(t _i)	q _{Low} (t _j)	P _{Low} (t _i)	COP _{Low} (t _i)	q _{Ful} (t _j)	P _{Full} (t _j)	COP _{Full} (t _j)	HLF ^{LOW} (t _i)	PLF ^{Low} (t _i)	
	OAT	Table ?	Table 18	Table 18	Eq 11.110	11.157-159	11.160-162		11.119-124	11 125-129		Eg 11.165	Eq 11.166	

AHRI 1600 and 600 Bin Calculation – GSHP Cooling

11	62.5	58.0	310	497	1171	40756	1574	25.89	53156	2328	22.84
10	67.5	60.4	593	251	5074	40622	1624	25.02	52662	2393	22.01
9	72.5	62.8	855	37	8977	40489	1673	24.20	52169	2458	21.22
8	77.5	65.2	842	0	14962	40356	1722	23.43	51676	2524	20.48
7	82.5	67.6	653	0	20947	40222	1772	22.70	51182	2589	19.77
6	87.5	70.0	398	0	26932	40089	1821	22.01	50689	2654	19.10
5	92.5	72.4	176	0	32917	39956	1870	21.36	50196	2720	18.46
4	97.5	74.8	62	0	38902	39822	1920	20.74	49702	2785	17.85
3	102.5	77.2	24	0	44886	39689	1969	20.16	49209	2850	17.26
2	107.5	79.6	9	0	50871	39556	2018	19.60	48716	2916	16.71
1	112.5	82.0	2	0	56856	39422	2068	19.07	48222	2981	16.18
	tj	t _{j,loop}	Nj	N _{s,j}	BL(tj)	$q_{Low}(t_j)$	$P_{Low}(t_j)$	$EER_{Low}(t_{j})$	q _{Full} (t _j)	P _{Full} (t _j)	EER _{Full} (t _j)
	OAT	Table ?	Table 15	Table 15	Eq 11.65, (b)	Eq 11.74	Eq 11.75		Eq 11.76	Eq 11.77	
	0 A T	Loop Temp	Cond Hours	Shldr Hours	Load Line	Min Cap	Min Power	Min EER	Max Cap	Max Power	Max EER


Demand Comparison Assumptions

- Peak Demand OAT
 - Heating 5 degF
 - Heating -15 degF
 - Cooling 95 degF
- ASHP
 - 2 stage, 16 SEER2, with EH
- CCHP
 - New Market Data of VS CCHP with EH
- GSHP
 - VS GSHP, 40 EER, 5 COP with EH

Peak Demand Cooling Summary @ 95 degF

Cooling Demand

	Total Peak kW	Total Peak EER	Peak kW per ton
ASHP	2.70	12.8	0.59
CCHP	2.74	12.6	0.68
GSHP	1.55	22.2	0.39

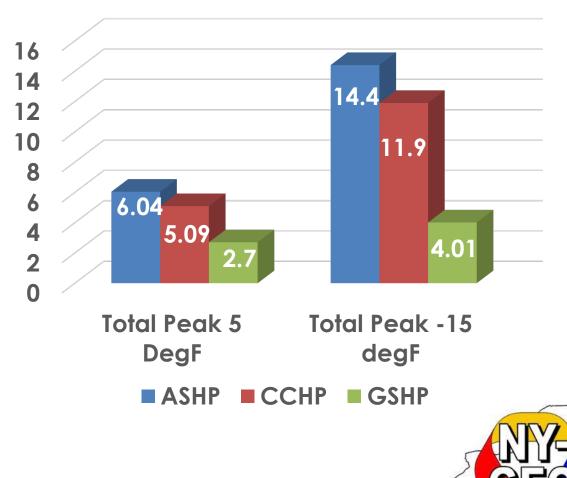
Note:

Assumes new unit and does not include dirty coil degradation.

OUTDOOR COIL DEGRADATION

- An outdoor condenser with:
 - 40% condenser fouling cause a performance degradation of 16%.
 - 30% refrigerant leakage cause a performance degradation of 12%
- Whereas in case of an indoor evaporator fouling the performance degradation was less than 3% to negligible. GSHP relatively unaffected.
- Therefore, from seasonal simulations of the heat pump along an entire machine lifetime of 12 years, it is found that none of the maintenance strategies analysed can significantly reduce the number of scenarios penalized by faults.
 - Mauro, Pelella, Viscito Department of Industrial Engineering, Università degli Studi di Napoli – Federico II, P.le Tecchio 80, 80125, Naples, Italy 2023
- Industry accepted degradation after 5 years (ASHRAE).

Coil Degradation	Capacity	Power kW	EER
ASHP	0.97	1.03	0.94
ССНР	0.97	1.03	0.94



	HP Peak kW 5 degF	Total Peak kW 5 degF	HP Peak COP 5 degF	Total Peak COP 5 degF	HP Peak kW -15 degF	Total Peak kW -15 degF	HP Peak COP -15 degF	Total Peak COP -15 degF
ASHP	3.44	6.04	2.16	1.87	3.24	14.4	1.0	1.0
CCHP	5.07	5.09	2.12	2.08	2.85	11.9	1.85	1.21
GSHP	2.70	2.70	3.89	3.89	3.76	4.01	3.78	3.59

Heating Peak Demand

Heating Peak Demand

	Peak kW per ton 5 degF	Peak kW per ton -15 degF
ASHP	1.51	3.6
CCHP	1.27	3.6
GSHP	0.68	1.0

- Although CCHP are a distinct improvement over ASHP in primarily heating climates, peak demand is still dominated by the necessary elect heat. Peak Demand is prominent at 5 degF and worse at -15 degF.
- CCHP will be forced to operate in the adverse conditions of winter in the north the whole season. This is largely an unproven environment for most historical ASHP's.
- GSHP are still the only viable solution to dependably limit peak demand for winter peaking utilities in northern climates.

QUESTIONS?

Peak Demand Comparison: ASHP, CCHP, & GSHP

Speaker:

Bob Brown / WaterFurnace International

HEAT PUMPS & THE GRID • ROOM M2B • 10:30-11:30 AM