NY-GEO 2023 • NY-GEO 2023 • NY-GEO 2023 • NY-GEO 2023

Geothermal Project Presentations

2023 GeoStar Top Job

Presented Live at the NY-GEO 2023 Conference Albany, New York on April 26, 2023

Moderator: Joanne Coons / NY-GEO Member

Finalists:

Christie Reaves / Markland Johannes Rosemann / Buffalo Geothermal Steve Taylor / Historic Finch Jim Thomas / Moonshot Farm Claire Lukasiewicz / Zen Building

The Northeast's Premier Heat Pump Conference • www.ny-geo.org

A BIG THANK YOU to This Year's Sponsors!

We Couldn't Do It Without You! • www.ny-geo.org

Moonshot Cut Flower Greenhouses Farm

Thomas Geothermal Engineering Jim Thomas

4/26/2023

The Basics

The Basics

- "Long tunnel" is 96' long by 34' wide about 3264 SF
- Quonset hut style with steel tubular ribs
- Double layer 6 mil poly sheeting with air gap @ R 1.8
- Air gap maintained by small muffin fan
- 2' deep vertical fiberglass band to inhibit heat transfer
- 8' wide sliding doors on each end w-brush sealing
- Dual shuttered air vents with exhaust fans
- Manual rollup side curtains for fresh air
- Plants grown directly in floor soil USDA requirement

Can this be done?

- First question is, would you want to do geo on a 3000+ SF home with almost no insulation and a soil floor?
- Propane unit heater rated input 200K Btuh @ 80% efficiency
- Consumed 2162 gallons during 2021-22 heating season Nov 1 Mar 15 at a cost of \$6775
- Wasted 35 million BTUs or 65% required to heat a NJ home
- Used Purdue University Controlled Environment Agriculture Kad model @ 15 deg design day = 10.86 tons
- Good match for two 6 ton residential single phase geo units
- Yes this can be done!

2023 NY-GEO Top Job

Financing

- 2022 USDA Rural Energy for America Program (REAP) offered
 25% grant almost all expected to be for solar
- Federal commercial 10% tax credit plus depreciation
- No New Jersey incentives
- Customer still wanted to move forward even after Build Back Better failed
- Fortuitously the Inflation Reduction Act boosted the Federal commercial tax credit to a 30% bonus rate gives 6 year ROT
- Rampant inflation in 2022 caused a 10% increased project cost but USDA grant based on original application proposal

The Design

- Winter flowers like 40 to 70 degree growing temperature
- Temperatures above 90 or below 32 can kill the crop
- Initial requirement was 50 degrees overnight @ 15 degrees OAT
- Decided to retain propane unit heater as backup
- Retained exhaust fans to help control temperature and humidity
- Conceived as a heating only system very unbalanced load
- Added a custom "waterside economizer" to harvest compressor-less heat to charge the loop during summer
- Exploiting thermal energy storage!

The System

- Selected components for high reliability and performance
- USDA required 3 years of performance monitoring
- Easily fulfilled by WaterFurnace Aurora/Symphony system
- Chose a pair of high efficiency 6 ton WF Series 5 with variable speed ECM blowers + refrigeration & performance monitoring
- Modulating water valves at units to minimize pumping
- Easy logic to implement compressor-less cooling with WF "load shed" feature – low cost multisource – 1% of project
- Lightweight DuctSox fabric ductwork removeable to clean

The Loop

- 1.5 Acre pasture adjacent to tunnel ideal for horizontal
- Selected high performance Twister pipe by Agreenability
- 2100' pipe in 7 trenches 6' deep
- Low outside Headloss @ 10 Feet of Head (FOH)
- Retained Twister center corrugated pipe above ground to dampen field with water
- High efficiency pumping with GeoFlo NP-Multi with Grundfor Magna3 variable ECM pump set at constant pressure
- Oversized HDPE to bring total head loss to about 40 FOH

The Loop

2023 NY-GEO Top Job

Early Discoveries

- Solar gain far above what we expected
- Tunnel would heat up to 90 degrees by 10 am when it was below freezing outside
- Owners would open sliding doors to cool off but lost all reserve heat that had to be made up again
- But Heat load overnight was less from day soil charge-up
- High humidity a big problem sometimes 85+%
- Mold growth and fungus a concern

How'd it go?

- Customer wanted overnight temp higher @ 55 degrees
- Wanted active cooling mid-winter to control overheat
- Active cooling also aided humidity control
- Saw active cooling as efficient ground charging would generally run the loop up +15 degrees during the day
- Heat loss through the soil was not a significant factor
- Cost savings over propane within the ballpark estimate
- Electric consumption Jan 12 Apr 15 was \$1238
- Ground charging over the summer should increase efficiency further next and subsequent winters

2023 NY-GEO Top Job

How'd it go?

15

The Future

- USDA REAP Grants up to 40% for 2023 Approved Projects
- Continue to enjoy Inflation Reduction Act tax benefits
- Helped Rutgers University apply this year to build two new greenhouses for educational purposes
- Moonshot looking to convert 2 more greenhouses and build another – customers like green growing concept
- Hydroponic farming and winter locally grown
- Biggest new opportunity could be cannabis growing in NJ //
- Interest by Senator Cory Bookers office at Federal level

Questions?

thomasgeothermal@gmail.com

(609) 923-5424

Thank you!

2023 NY-GEO Top Job

ZEN (Zero Energy Nanotechnology) Building: Harvesting Alternative Energy

C. Lukasiewicz

April 26, 2023

Outline

- ZEN at a Glance
- Energy Efficiency Measures
 - Architectural
 - Mechanical Equipment
 - Energy Harvesting
- Retro-Commissioning Efforts
- Funding

ZEN at a Glance

6 Stories 363,000+ sqft

10,000 sqft atrium

Fuel cell

Tier-3 data center

Originally constructed in 2015 Retro-commissioned beginning in 2022

Capacity for 1,500 individuals

2.4 megawatt, offsite PV farm

Largest proof of concept for zero energy mixed use space in it's time!

Energy Efficiency Measures

- Architectural
 - Lighting
- Mechanical Equipment
 - HVAC
 - Controls
- Energy Harvesting Strategies
 - Data Center Heat Recovery
 - Chiller-Heaters
 - Heat Pumps

Energy Efficiency Measures – Architectural

- "Donut Design"
 - Reduce lighting electricity needs by more than 70%
 - Often only a small LED lamp is needed
 - ETFE "Pillow Roof"

View of "Pillow Roof" from outside

Energy Efficiency Measures – Mechanical Equipment

- Chillers with free cooling
- Energy recovery DOAS Units
- CO2 monitoring
- BMS paging and access
- VFDs on all motors (pumps, fans, etc.) for efficiency

Energy Efficiency Measures – Mechanical Equipment

25 6/12/2023

Is this geothermal?

True Geothermal-

- Storing heat energy in the Earth
- Requires a ground well

Both-

- Highly efficient
- Utilize heat pumps for seasonal cooling and heating as opposed to mechanical energy

ZEN Building-

Recovering energy through water to water HXs
Both sides of loop are utilized for HVAC so there is no need to "store" energy in ground

Energy Efficiency Measures – Energy Harvesting

- Data Center Heat Recovery
 - Winter mode: Free cooling at cooling towers often eliminates need to run mechanical cooling; heat pumps reject heat to the condenser water loop
 - Summer mode: Utilize control strategies to optimize chiller staging

SUNY RF/NY CREATES Proprietary and Confidential

Energy Efficiency Measures – Energy Harvesting

Heat Pumps (DTWS)

- Winter mode: Create warm water for AHU coils to act as "pre-heat," heat rejection to the data center's chilled water loop (free cooling)
- Summer mode: Reject heat to the building condenser water loop, supply chilled water to AHU coils

Energy Efficiency Measures – Energy Harvesting

- Chiller-Heaters
 - Winter mode only: when ambient conditions allow, chillers may operate in "reverse"
 - Condenser and evaporator swap rolls
 - Allows ZEN to be heated with a chiller
 - "cold side of this loop" supports ZEN data center cooling
 - Conserves natural gas as there is no need to run a boiler

Retro-Commissioning

- Timing drove the need-
 - Design for this project: Summer 2013
 - Data Center majority loaded: Winter 2021
- Focus on BMS and control programming
- Implementation of Facility Connex
 - 1,000+ Fault Detection & Diagnostics
 - Hundreds of analytics
 - Web based access to site information 24/7, 365

Funding

- Original Project totaled ~\$200 Million
 - Over 4+ years from design to completion
- Retro-commissioning largely grant funded
- Participating Parties
 - National Grid
 - NYSERDA
 - Japan's New Energy and Industrial Technology Development Organization
 - State and Federal Grants
- Aligned on goal to install, commission and demonstrate state of the art technologies including solar photovoltaics, lighting, fuel cells and smart building energy management systems to achieve a *net zero capable facility*
- High visibility project focused on setting worldwide example, keeping NY Forefront of scientific research, create jobs, stimulate economy

While the ZEN Building may be the first of it's kind, let's not make it the last!

BOUCHER ENERGY SYSTEMS, INC.

Steven Taylor Installation Manager

Historic Fitch Tavern

Historic Fitch Tavern

- Eliminate fossil fuel
- Reduce carbon footprint
- Restore historic exterior
- Increase occupant comfort
- More control over individual living areas
- Remote access
- Equipment monitoring
- Improve efficiency of home

Project Goals

Historic Fitch Tavern

Oil fired hot water boiler

- 90% main living area
- Domestic hot water
- Kitchen wing radiant heating

Natural gas furnace

- In-law suite
- Grossly oversized for the space

Existing Conditions: Heating

Existing Conditions: Cooling

- Manual J load calculation
- Define heating/cooling zones
- Choose Technology
 - GSHP
 - Higher installed cost Lower operational cost
 - Utility incentives and Tax credits
 - ASHP
 - Lower installed cost Higher operational cost

Steps to Success

		P	roject Inform	ation		
For	Rob 12.0	entKeep ∋reatRd, Bedfor	d, MA			
		D	esign Inform	ation		
Outside db (°F) Inside db (°F) Design TD (°F) Dailyrange Inside humidity (° Moistue differenc	%) ce(gr/b)	Htg 4 70 68 30 28	Clg 87 Methoo 75 Constru 12 Finepla M 50 24	l ∟ction quality ⊐es	Infiltration S	Simplified emi-loose 6 (A
HEAT	1NG EQUI	PMENT		COOL	ING EQUIPMENT	r
NICCEI 1/3 AHRInef n/a Efficiency Heating output Heating output Tempestue rise Actual airflow Air flow factor Static pressue Soare themostat		n/a 0 Btu 0 °F 0 chm 0 chm 0 in H n/a	Cori Coi AHI Effin Ser Tote Adt Abuh Airi 20 Stat Los	no nya n nya Riref nya ciency sible cooling al cooling al air flow tow factor tic pressure d sensible heat ratio		n/a 0 Btuh 0 Btuh 0 Btuh 0 cfm 0 cfm Btuh 0 cfm Btuh 0 in H2O 0
ROOMNAME		Area (ff)	Htg bad (Btuh)	Clg load (Btuh)	HtgAVF (cfm)	Clg AVF (cfm)
ROOMNAME kitchen unit 1740 1st unit 2nd unico annex		Area (ff) 1528 1218 1998 756	Htg bad (Btuh) 33085 19533 30485 23551	Cig load (Btuh) 20357 8917 16285 11792	HtgAVF (dm) 760 380 633 590	ClgAV/F (cfm) 77 36 6
ROOMNAME kitchen unit 1740 1st unit 2nd unico annex Ensise House Oherequip loads Equip @ 1.00 H Latent cooling	RSM	Area (ff) 1528 1218 1996 756 5498	Htg load (BtuH) 33085 1953 3045 23551 106914 0	Clg load (Btuh) 20357 8917 16285 11792 56883 0 56853 5575	HtgAVF (dfm) 760 380 633 590 2364	Cig AVF (cfm) 7 3 6 5 23

- Manual J load calculation
- Define heating/cooling zones
- Choose Technology
 - GSHP
 - Higher installed cost Lower operational cost
 - Utility incentives and Tax credits
 - ASHP

Lower installed cost Higher operational cost

Steps to Success

- Water Furnace 5 Series Water to Water
 - Kitchen wing radiant heating
 - Unico Air Handlers Hot/Chilled Water Coils
 - Childrens bedrooms
 - Kitchen wing
 - Main first floor

Equipment Selection

- Water Furnace 5 Series Split
 - 2 Stage equipment to better match loads
 - Second floor Primary Suite
 - Third floor Office/Guest bedroom

Equipment Selection

- Water Furnace 5 Series Package
- 2 Stage equipment to better match loads
- Family room
- New connector

Equipment Selection

- Space constraints
 - Third floor completely is finished
 - Preserve historic look of home
 - Some systems already in place

Equipment Selection

- Water Furnace
 - Refrigerant/Performance monitoring options
 - Aurora Web Link
 - Symphony Web enabled controls
 - Fault notification
 - Variable speed flow centers minimize pumping power
- Unico System
 - Green Series air handlers with ECM blower motors
 - Even temperatures floor to ceiling
 - National Trust for Historic Preservation

- Ground Loop Design
 - 4 450' Boreholes 1¹/₄" pipe
 - 3" Main header pipe to basement
 - 175' per ton of capacity

- Controls
 - HBX ECO-600 Geothermal reset control
 - Honeywell THM8320 thermostats
 - Honeywell Redlink wireless outdoor sensor
 - Honeywell Redlink internet gateway

- Eliminate fossil fuel
- Reduce carbon footprint
- Restore historic exterior
- \checkmark Increase occupant comfort
- More control over individual living areas
- Remote access
- Equipment monitoring
- Improve efficiency of home

Success!

The Pierce Arrow Lofts Geothermal Conversion

The Building

- 158,000 sqft
- Build in 1908
- It is one of the 2 only historic buildings in the United States with a concrete Barrel Roof.
- It served as the administration building for the Pierce arrow production facility from 1908-1938.
- In 1974 added to the National Register of Historic Places.

The Conversion

- 127 Apartments
- 7,500 Sqft Restaurant
- Completely heated and cooled by Geothermal
- 100% of the Domestic Hot Water Supplied by Geothermal

Geothermal System

Challenges

- Dense Urban Environment
- Efficient System Design
- Load Balancing

Dense Urban Environment and the Loopfield

- 50 Boreholes
- 350ft Deep spaced 20ft apart
- Closed Loop 1 ¹/₂ HDPE U-Bend
- Graphite enhanced grout

Efficient System Design

- 3 independent operating Flow-Centers
- pumping power is less than 3% of the system power consumption
- Reduced Pressure Loss by shortening average run out and connection Lengths

Efficient System Design the Flowcenters

- ECM Driven Variable Speed Pump
- Automatic adjustment of Flowrate based on System back pressure

Efficient System Design the Flowcenters

- Primary/Secondary Loop Setup
- ECM Driven Variable Speed Pump
- Automatic adjustment of Flowrate based on System back pressure

Load Balancing with DHW Generation

- Balancing the Loads avoids temperature drift of the loopfield
- It enables to reduce the loopfield size

Load Balancing with DHW Generation

- 2 Stage Design
- Average COP of 3.4 vs 2.9
- Increased Redundancy

Geothermal System

Recap

- 333 Tons of Heating and Cooling Load
- Closed Loop system with 50 350ft deep Boreholes
- 3 Flowcenter
- 147 Forced Air Heatpumps
- 6 5Ton Vapor Injection High Temperature Water-Water Units
- 8 162 Gallon High Efficiency Storage Tanks

Recognition and Impact

• Supported with \$400,000 Rebate from

NYS Assemblyman William Conrad "Many thanks to the New York Geothermal Energy Organization for facilitating this morning's legislators tour of The Pierce Arrow Lofts, a beautiful showcase for renewable energy, with a geothermal system that illustrates our potential for energy independence..."

Thank You

April 26, 2023

- Industry leading, vertically integrated, geo-exchange solutions provider with 20 years organizational expertise.
- Delivered over 400 projects, accounting for over 50% of the systems delivered in Ontario.
- Experience with large-scale residential, commercial and institutional new builds and retrofits.

Project Collaborators

© 2023 Geosource Energy Inc. All Rights Reserved.

The Project - 240 Markland

Owner:	Carttera Management Inc
Location:	240 Markland Dr, Toronto
Project Delivery:	Design-Build-Operate

Retrofit Program:

10 storey & 135K-sq.ft/12.5K-sq.m

1,305 kBH/382 k W_{th} & 105 RT/363 k W_{th}

Planned Program:

9 storey and 205K-sq.ft/18.7K-sq.m

 $3,525 \text{ kBH/1,033 kW}_{th} \& 245 \text{ RT/846 kW}_{th}$

Themes:

Fully electrify heating w/ retrofit

Community energy asset.

Turnkey – DBO

Retrofit Program

© 2023 Geosource Energy Inc. All Rights Reserved.

Planned Building Program

© 2023 Geosource Energy Inc. All Rights Reserved.

Ground Heat Exchanger Selection

Retrofit Building

	Cooling	Heating
Geothermal Capacity [kW _{th}]	363	382
Geothermal Energy Production [MWh _{th}]	1,086	1,719
Ground-side Energy [kW _{th}]	343,268	427,368

New Building

Basis of Design Loads on the GHX	Cooling	Heating
Geothermal Capacity [kW _{th}]	846	1,033
Geothermal Energy Production [MWh _{th}]	792	1,144
Ground-side Energy [kW _{th}]	924,185	850,974

Ground Heat Exchanger Selection

Combined System

Basis of Design Loads on the GHX	Cooling	Heating
Geothermal Capacity [kW _{th}]	1,209	1,415
Geothermal Energy Production [MWh _{th}]	1,086	1,719
Ground-side Energy [kW _{th}]	1,267,453	1,278,342

Annual Ground Imbalance:

Heating dominate - 14,644 kWh overcool of ground and a imbalance of -0.9%.

Active Ground Balance:

Dual purpose auxiliary systems installed for flexibility in the planned program.

Ground Heat Exchanger Solution

- Vertical Borefield design
 - 4.25" boreholes up to 850'
- Combined system size: 113 bh @ 850'
- 17.5' spacing preferred, 15' can be squeezed
- 113 boreholes at 17.5' spacing:
 - 3,215 sqm (13,280 sqft)

Geothermal Heat Exchanger (GHX):

Project Goals & Constraints

- GHX size: 113 Boreholes
 - 2,400sqm- 3,200sqm
- Site Area: 12,700sqm
- CONSTRAINTS
 - Partially Occupied Retrofit serviced by May 2022
 - Uninterrupted Service
 - Mature trees
- Working area 1,250 sqm
 - Potential for vertical boreholes at 15' spacing: 59

Our Solution

Angled Drilling Technology

© 2023 Geosource Energy Inc. All Rights Reserved.

Angled Drilling Implementation

© 2023 Geosource Energy Inc. All Rights Reserved.

Geothermal Mechanical Station

Control & Data Acquisition

Control Strategy:

Feed Forward Demand-Based Pumping

Merged GHX and Pump Performance Maps

Data Acquisition & Analytics:

System Performance Logged on 5-min Intervals for 30+ years

Data Analytics and Trends Available on Site and Remotely

Future Functionality:

Dynamic Thermal Balance Management, via Thermal Imbalance Setpoint

Future Machine Learning to Optimize System Performance Map

Project Delivery Model

GEOSOURCE

ARMSTRONG

Asset Ownership:

Carttera Owned Geothermal System, Capex Funded and Full Operational Savings Retained

Asset Delivery:

Geosource Design-Built System, with Partners Rathco ENG and Armstrong Fluid Technology

Operational Support:

Geosource Retained to Operate the Asset, on Carttera's behalf.

Including Building Operator Training, Monitor System Status, and Provide Semi Annual Performance Reports with Recommendations

