

The Science of TENs HEET's LeGUp Research Consortium

Moderator: Mark Kleinginna / Emergent Urban Concepts

Panel: Isabel Varela / HFFT

Fric Juma / HFFT

NY - GEO 2025

Rebecca Brenneis / HEET

THERMAL ENERGY NETWORKS • ROOM M1 • 1:30

Learning from Geothermal Energy Networks (GENs)

Presented by Isabel Varela | Science Director at HEET | April 23, 2025

heet

LeGUp - A Geothermal Energy Network (GEN) Research Consortium

Goals

- Evaluate the potential of networked geothermal to deliver heating and cooling in Massachusetts
- Engage with and share findings with stakeholders (e.g., Department of Public Utilities, gas utilities, communities)
- Increase understanding and optimization of GENs

LeGUp Research Areas & Collaborators

Core Modeling

LBNLNREL

• UCB: SRG

LeGUp Governance

Governand

Utilities

Statewide Scaling

NREL

- HEET
- Buro Happold

Cost Studies

- NREL
- BuroHappold
- HEET

Equity, Health, Ecology & Env.

- BU, BUSPH
- Umass Lowell

Grid Impacts Geothermal Networks Databank

HEET

Kickstart Feasibility Studies

HEET

LeGUp Project Connections

SCALING & DRIVING CHANGE

LeGUp Data - Installations in MA

Motivation: MA Decarb Roadmap mandates net-zero emissions by 2050, 32% of emissions from building sector (MA)

- **1. Framingham** Eversource Gas
- 2. Franklin Field National Grid
- 3. Framingham extension Eversource Gas

Smart Ground - Monitoring Temperature In Boreholes

- Real-time monitoring of temperature along 14 boreholes at Framingham
- Monitor subsurface temperature drift & study thermal storage

GAS TO GEO

Fiber Optic Cable Configurations

> SOGA RESEARCH GROUP BERKELEY ENGINEERING

ENERGY

LeGUp Develops GENs Modeling Tools

Develop **Full Physics** and **Reduced Order** models using data from the first few installations:

LeGUp Develops GENs Modeling Tools (NREL)

LeGUp Models and Monitors Impacts of GENs

Develop data-driven models and test predictions:

Impact of GENs on Ecology

- 161 trees health assessment of crown and canopy, [0 dead, 5 excellent]
- Difference between 2023 and 2024 not significant (4.23 vs 4.29)
- After installation of GEN no negative nor positive impact on the overall health of the trees

LeGUp Energy Systems Dashboard

> Population Data

- > EJ Populations
- > Household Income
- > Energy Cost
- > Justice40
- > Natural Gas Infrastructure
- > Utility Providers
- > Housing Characteristics
- > Gas Leaks
- > Gas System Enhancement Program (GSEP)
- > Parcel Information
- > Asthma Health Data
- > Non-Residential Buildings
- Interested in Geothermal Service

Interested in Geothermal Service

Energy Cost

Non-residential Buildings: Schools

GSEP

Utility Provider: Gas Service by Town

GEN Feasibility Projects in MA

communities received \$50,000 for GENs feasibility studies

communities received \$10,000 for GENs community engagement

MAGEN Feasibility Learnings

Policy & regulatory hurdles challenge non-geothermal experts

Community trust is foundational – early engagement with municipal leaders and residents significantly impacted project momentum.

LeGUp Develops Regional Scaling Projections

- Develop scaling projections from the Core Models
- Measure and maximize impact

SCALING AND DRIVING CHANGE

Enable quantitative comparison

Contribute to prediction models

Inform planning & optimization of future systems

Record costs related to heating and cooling

Identify costs and energy use by stages

Ø

Catalyze & derisk the adoption of these networks Demonstrate impacts on emissions, environment and human health

Support development of data-driven legislation & regulation

- What? A public data bank of geothermal network installations
- Why? to inform and facilitate future developments, enabling societal-scale building decarbonization
- How? Interface with HEET website. Database saved in perpetuity in Harvard Dataverse . Open access.

- What? A public data bank of geothermal network installations
- Why? to inform and facilitate future developments, enabling societal-scale building decarbonization
- How? Interface with HEET website.
 Database saved in perpetuity in
 Harvard Dataverse . Open access.

- What? A public data bank of geothermal network installations
- Why? to inform and facilitate future developments, enabling societal-scale building decarbonization
- How? Interface with HEET website.
 Database saved in perpetuity in
 Harvard Dataverse . Open access.

www.heet.org/databank

LeGUp Creates a Databank for GENs Categories

Stages

Framingham Project Selected by DOE Construction Grant

Partners: HEET, Eversource Energy, City of Framingham, Salas O'Brien.

LeGUp Open Day

Findings from Geothermal Networks Research Consortium

April 28

Agenda & Register

Distributed Fiber Optic Sensing in Geothermal Networks NY GEO 2025

Presented by Eric Juma | HEET | April 23, 2025

The Eversource Geothermal Pilot Project

What is DFOS? (Distributed Fiber Optic Sensing)

Schematic representation of DFOS technology (Mahmoud et al. 2021)

Why do DFOS?

- Typical monitoring = only input/output temps (ΔT)
- DFOS = Actual borehole/subsurface conditions
- Detects thermal drift & groundwater flows
- Measure thermal storage
- Helps **test models** and integrate with them
- Groundbreaking project want to **learn** as much as we can

Our project

- 14 boreholes instrumented total
- 1 borehole instrumented during TRT at each borefield
- 2 boreholes instrumented, but not connected to loop

Fiber configurations

1.2 Temperature variation along time

2.2 Temperature variation along time

Next steps

- Resolving intermittency issues
- Integrated analysis with SCADA data
- Analysis of thermal storage and thermal drift
- Integration with other LeGUp models
- Sharing through HEET Databank
- Franklin Field & Framingham 2nd loop installations

LeGUp Core Modeling NY GEO 2025

Presented by Rebecca Brenneis | Scientist at HEET | April 23, 2025

Role of Modeling in LeGUp

SCALING & DRIVING CHANGE

Significance of Work

Open-source, Techno-economic modeling tool for single-pipe, ambient temperature, thermal energy networks

Assesses the economic feasibility of prospective geothermal energy networks projects and identifies variables that maximize performance

Tool for project managers, developers, financial analysts, engineers and researchers etc.

Simpson, et al 2024 Energy Conversion and Management

5th Generation Networks

<u>Heat and Economic Analysis Tool for NEtworked</u> Thermal Systems

Technical + Economic

Model Data Flow

Engineering Reduced Order Model

ROM Parametric Analysis

Conference

2024,

Techno-Economic Model

Reservoir Engineering

Decision Use Cases

Land Use Tradeoffs Building Demand Profiles 000

Existing Energy Economics Thermal Source

Key Takeaways

→ HEATNETS is an open source, techno-economic model for single pipe, ambient temp loops

→ Integrates TENs and GENs into broader energy feasibility decision making and informs scalability

→ Next steps: Launch tool to the public and continue improvement with real world data training

LeGUp Open Day

Findings from Geothermal Networks Research Consortium

April 28

Agenda & Register

Contacts: isabel.varela@heet.org eric.juma@heet.org rebecca.brenneis@heet.org