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Purpose Learning Objectives

3

Holistic energy system planning that is cost effective01

Technology and cost considerations for baseload and peak 
load thermal operation needs

02

The importance of thermal energy storage for optimizing 
equipment operation in a renewable energy grid

03

Short-term and long-term energy transition considerations 
for bridging fossil fuels to low-carbon energy production 
technologies

04
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Agenda 1. Holistic energy system planning

2. Baseload, peaking, and backup thermal strategy

3. Role of thermal energy storage

4. Electric capacity assessment

5. Project examples
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Holistic energy 
system planning 
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Holistic Planning

6Thermal energy network potential
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Goal
• Decarbonization solutions 

that are pragmatic

• Equitable

• Flexible

• Resilient

Heat sources
• Air

• Ground

• Wastewater

• Waste heat

• Cooling…..

Equipment
• Heat pumps

• Refrigerants

• Storage (thermal, battery)

• Piping

• System integration

Electrical grid 
• Timing of renewable/carbon free 

energy build out and integration 

• Future price fluctuations from 
intermittent solar and wind 

• Influences – data centers/AI growth, 
increased cooling demand

7

Decarbonization influences and considerations

Funding
• Grants

• Incentives

Workforce development
• Jobs

• Training

• O&M

Alternative fuels
• RNG

• Biofuels

Uncertainty
• Gas constrained areas

• Gas moratoriums

• Electric grid constrained areas

• Carbon tax
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Baseload, Peaking, 
and Backup Strategy

8
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Base Load vs Peak LoadSome baseload technologies 
characteristics

• 55% of peak demand covers approx. 90% 
of annual load

• High Capital Expenditure (CapEx) (should 
operate many hours annually)

• Should have low fuel costs

Some peaking/backup technologies 
characteristics

• 45% of peak demand covers 10% of annual
load

• Low CapEx (e.g., boiler)

• High technology reliability (backup)

• High fuel supply reliability

• Higher fuel costs

Base load/peaking technologies 

Example Heat Load
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Potential heat sources

10

Potential heat sources/sinks Heat source quality

Industrial waste heat (sources could close) High

Wastewater treatment facilities (effluent) Medium

Heat rejection from cooling (e.g., process or comfort) Medium

Heat rejection from refrigeration Medium

Aquifer thermal energy storage (ATES) Medium

Geothermal (closed loop boreholes) Low/medium

Ambient air Low

Sewer heat recovery (influent) Low

Surface water Low

Electric substations Low

Subway tunnels (ambient or dewatering) Low
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Technology 
Screening

Technologies evaluated on
• Ability to meet the long-term GHG goals

• Capital Expense (CapEx)

• Operating Expense (OpEx)

• System integration
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Renewable 
Technologies
• Wind turbine

• Solar PV

• Biofuels* 
(biomass, bio-oil)

Energy Storage
• Tank thermal energy 

storage (TES)

• Borehole thermal 
energy storage (BTES)

• Aquifer thermal energy 
storage (ATES)

Fossil Technologies
• Natural gas boilers

• Fuel oil

Electrification 
Technologies
• Heat pumps (ground 

source, air source, 
wastewater)

• Electric boilers

Technologies 
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The role of thermal 
energy storage
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The need for thermal storage

15

Renewable 
production

Share of 
demand

Onshore Wind 9,356 44.3%

Off-shore wind 4,705 22.3%

Solar PV 2,158 10.2%

Waste 579 2.7%

Biomass 1,541 7.3%

Total 18,338 86.8%

Renewable Power Production, DK-West 2023

”Excess” power - export, curtail, thermal storage, other

Production from fossil fuels
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The need for storage, February 2023
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Renewable Power Production, DK-West February 2023
If heat pumps are 

operated here, they will 
be based on fossil fuels

Too much renewable 
energy must be 
curtailed or used

Storage is necessary to capture 
renewable energy, reduce transition 
costs, and speed up the transition
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Electric Capacity 
Assessment

17
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Electrical Capacity Assessment
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Potential need for 
electrical upgrades on
• Building level

• Campus level

• Utility level
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Project examples

19
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Taarnby 
Municipality DK
Cost-effective low carbon district energy system

20
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Ferring HQ (new)

The Blue Planet 
Aquarium (exists)

Water treatment plant

Hotel and office park (new)

• Heat pumps - 4.5 MW cooling, 6.2 MW 
heating

• Expected 2.8 MW additional cooling from 
ATES plant

• Hot day: 10 MW cooling capacity from heat 
pumps, ground water, and tank thermal 
storage

Won European heat pump prize as most innovative heat 
pump project in Europe
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Taarnby Municipality, DK – District heating and cooling

22

• Compliments existing district heating system that produces cost-effective 
energy based on many heat sources: (e.g., cogeneration, residual waste, 
biomass, solar thermal, thermal storage, and natural gas)

• Hotels and offices need cooling

• During summer, heating produced from production of cooling

• During limited cooling demand, heat extracted from wastewater

• Ground source cooling (ATES) (Planned)

• Heat in the winter while cooling the groundwater

• Groundwater - free cooling in summer

• 528K gallon (2,000 m3) chilled water thermal storage tank

• Operational optimization according to hourly electricity prices and 
wastewater availability

• Adds flexibility and resiliency

• Energy plant located at Taarnby Forsyning’s existing WWTP, cheaper land, 
saving 25% investment costs
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Meta Data Center 
Odense, DK
Surplus heat to district energy system

23
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Location
• Odense: Birthplace of Hans 

Christian Andersen

• Population of 180,000 

• Fynsværket – Fjernvarme Fyn’s 
cogeneration plant – approx. 5 mi 
from the Meta site in Tietgenbyen

• Data center and heat pump plant 
are located in Tietgenbyen
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Odense district heating 
network - Meta data center 
feeds into

Distribution
• 65,000 connections/meters

• 75 mi transmission lines (176-194 °F)

• 1,370 mi distribution lines (158-167 °F)

Productions units
• Coal CHP (unit 7): 1,099/1,672 MMbtu/h (power/heat), 200,000 tmet coal/yr

• Coal is phased out as per spring 2024

• Substituted by: Large HP’s, electric boiler, seasonal storage etc. Until these 
technologies are ready in 2030, very limited heat will be produced from n-gas.

• Straw CHP (unit8): 109/300 MMbtu/h (power/heat), 200,000 tmet straw/yr

• Waste CHP (unit 11-13): 68/358 MMbtu/h (power/heat), 300,000 tmet waste/yr

• Wood Chips CHP (DKV): 80,000 tmet wood chips/yr

• Oil and Gas peak and reserve load (24 units)

• Small scale industrial surplus heat (~10 suppliers)

• Hyper scale datacenter (Meta): 136 MMbtu/h heat pumps)

Replacing with heat 
pumps, electric boilers, 

and biomass boilers
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The system

Source: Meta
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Meta data center and 
waste heat recovery plant

Key figures
• Combined heating and cooling with heat pumps

• 85 + 51 MMBtu/h waste heat from a hyperscale data center

• 340,000 MMBtu heat per year to the district heating network. Nearly 
7,000 households in the city of Odense will be heated up by the plant. 

• 9 heat pumps (3 x 3 in cascade): 

• 167°F in supply to DH 

• 113°F in return from DH (54°F delta)

• 59°F in supply to Meta 

• 81°F in return from Meta (22°F delta)

• COPheat for heat pumps = 4.8 – 5.2

• In operation P1:Nov 2019 / P2:Nov 2022

• Client: Fjernvarme Fyn (District Heating Utility)

Key figures:
• Combined heating and cooling 

with heat pumps
• 85 + 51 MMBtu/h waste heat 

from a hyperscale data center
• 340,000 MMBtu heat per year 

to the district heating 
network. Nearly 7,000 
households in the city of 
Odense will be heated up by 
the plant. 

• 9 heat pumps (3 x 3 in 
cascade): 

• 167°F in supply to DH 
• 113°F in return from DH
• 59°F in supply to Meta 
• 81°F in return from Meta
• COPheat for heat pumps = 4.8 –

5.2
• In operation P1:Nov 2019 / 

P2:Nov 2022
• Client: Fjernvarme Fyn 

(District Heating Utility)

Data Center

Heat Pump Plant
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SUNY Oswego
Clean Energy Master Plan 

28
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Ground mount 
solar or wind 

turbine

Lake Ontario

Wastewater 
Treatment

Electric 
substation 

transformers

Electric 
Generation Plant

Geothermal
Borefields 
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SUNY Oswego - TEN Configuration Analysis
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BaU 2a/2b 4a/4b 5b 6a/6b

District Type Existing systems – 
centralized steam

4G Cluster
(2-pipe)

4G Centralized
(2-pipe) 

4G Centralized
(2-pipe) 

4G Centralized
(2-pipe) 

Fuel/Heat 
source Fossil fuel (FF) Geothermal Geothermal Wastewater, 

geothermal Air, geothermal

Baseload 
Technology FF furnaces/boilers Heat pumps (HPs) HPs HPs HPs

Peaking 
Technology FF furnaces/boilers Electric or FF boilers Electric or FF boilers Electric Electric or FF boilers

Backup fuel/ 
heat source FF furnaces/boiler FF Boilers FF Boilers FF Boilers FF Boilers

Cooling AC unit, chillers HPs HPs HPs HPs

Tank thermal 
energy 
storage

No Yes Yes Yes Yes
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SUNY Oswego
Cluster C – Central Heating Plant

Cluster E – Mackin

Cluster N – Riggs

Cluster W – Little Page DH

Cluster S – Laker

Considerations:
• Space for heat pumps and 

distribution equipment
• Backup boilers
• Redundancy

Cluster E – Mackin

Cluster N – Riggs

Cluster W – Little Page DH
Cluster C

Cluster W

Cluster N

Cluster S

Cluster E
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Peak electrical demand impact
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Are Building Upgrades Needed for LTW? • HW Reset from 180F @ 0F to 
140F @ 60F

• GSHP operates 90% of the 
year
• Produces up to 165F
• Provides 80% of the annual 

load
• Peaking Boilers operate 10% 

of the year
• Produces HW from 165F to 

180F
• Provides 20% of the annual 

load
• Building upgrades would 

lower LTW distribution 
temperature
• More hours of GSHP 

operation
• Improves efficiency of GSHP

33
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Madrid ambient 
system

34
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Phases in the Madrid project
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Phase Plot Uses Heat (MWH) Coolth (MWH)

1

32.1 Residential/Commercial -297.5 183.6
38 Residential/Commercial -288.1 157.3
39 Residential/Commercial -708.2 387.3
32.2 Commercial/Offices -466.7 487.8
35 Commercial/Offices -3848.5 3996.7
40 Commercial/Offices -55.5 68.6

2

21 Commercial/Offices -531.0 593.8
22 Commercial/Offices -928.0 1004.9
23 Commercial/Offices -678.9 747.9
25 Commercial/Offices -771.2 839.2
26 Commercial/Offices -2424.8 2545.6
24 Health -309.6 270.2

3

3 Commercial/Offices -8372.5 8699.2
12 Commercial/Offices -9949.5 10469.9
31 Commercial/Offices -2975.0 3080.6
2 Educational -896.8 972.3
30 Educational/Civic -189.3 252.6

4

4 Residential/Commercial -951.0 464.8
5 Residential/Commercial -798.1 393.9
9 Residential/Commercial -1622.9 815.7
13 Residential/Commercial -674.8 340.5
14 Residential/Commercial -772.7 385.9
15 Residential/Commercial -728.3 356.1
17 Residential/Commercial -1145.9 572.6
18 Residential/Commercial -1216.7 581.6
19 Residential/Commercial -991.2 479.3
20 Commercial/Offices -918.8 983.5
1 Community Services -1995.6 2467.0
10 Sport -261.9 362.4
7 Community Services/Sports/Civic -2055.7 2953.6

Phase 1:

2024-2027

Phase 3/4:

2025-2034

Phase 2:

2024-2029

Annual loads (MMBtu/yr) 163,000 156,000
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Approach for the project

36

Ambient 

Loop

Plot thermal 
substation

Distribution to 
building systems

Active balancing unit: 
diurnal energy storage 

and top-up

Passive balancing unit:  
borehole energy storage

4G system
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Geothermal 
Store

Phase 3 
DHN

Phase 2 

DHN

Phase 1  
DHN

Phase 4 
DHN

Substations

Substation Substation

Substations

Ambient 
Loop

Network Configuration 1 Network Configuration 2, 
only Phase 1

Phase 1

Plot 32.1

Plot 39

Plot 38

Plot 35

Plot 40

Plot 32.2

Balancing 
Unit

To rest of 
network
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Hourly Demand
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Aquifer Thermal Energy 
Storage Hillerod, Denmark
District cooling in new urban development 

40
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Drilling 
Strategy

• Time series in five phases of 
the drilling

41
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Final ATES 
well design

• Logging of flows from the 
geophysical borelog

• Pct. indicating the shares of the 
total flows

• Initially to depth of 124.9 m (400 
ft), but yield was too low. 
Therefore, hole is casted in the 
bottom

• Final bottom is approximately 
71 meters (232 ft)

42

Well 2 Well 1
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Hydraulic Tests

Hydraulic tests carried out
• Specific capacity tests in both wells 

To assess the potential maximum yield and decide 
the flow rates for the subsequent tests

• Step-drawdown pumping tests both wells 
To evaluate well and aquifer losses and derive the 
well equation and assess whether the wells should 
be further developed by acidification

• Three-day pumping test in Well 2 with simultaneous 
injection in Well 1
To assess the aquifer parameters, the transmissivity 
T and the storage capacity S

43
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3D-Groundwater 
Model Calibration 
and Simulations

• Temperature changes after 3 
years of operation

• High yielding boreholes, tested 
at high flow

• Conclusion from test is that flow 
need to be reduced and/or 
additional boreholes are needed

• Client added two additional pairs 

44
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General 
Conclusions

• One ATES well pair produces roughly 
the same amount of energy as 40 
closed loop GSHP wells

• Well design and maintenance are 
important factors for an effective, 
long-lasting system

• Careful consideration needs to be 
taken to avoid thermal break-through

• The permitting process for ATES is 
significantly more complex than 
for GSHP

45
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Energy Transition 
Considerations 

46
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Understanding the complexity of transforming to 
clean energy 

Using existing 
assets during 
transition

Building 
improvements, 
HVAC upgrades 

Converting from 
steam to hot 
water

New electrification 
production 
technologies; thermal 
storage needs

Expected fluctuation in 
electricity prices due to 
intermittent production

Co-production for 
heating and cooling

Operation of 
technologies dependent 
of external influences 
(fuel/electricity)

New skills required from 
operational staff

Phasing Operational
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Thank you! 
Joe DiSanto, PE
Senior Energy Engineer, Energy
joseph.disanto@ramboll.com

John Florning
Chief Planning Engineer, Energy
jnf@ramboll.com

Rob Neimeier
Client & Market Officer, Energy
rob.neimeier@ramboll.com
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Learning Outcomes - Questions

1. What are the attributes of a baseload and peaking strategy?

2. What are the benefits of tank thermal energy storage (TES)?

3. For SUNY Oswego, approximately what percentage of the campus heat demand is covered by Clusters C and 
W?

49
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Learning Outcomes - Answers

1. What are the attributes of a baseload and peaking strategy

a. Cost efficiency, use of existing assets for peaking and emergency, resiliency, redundancy

2. What are the benefits of tank thermal energy storage (TES)?

a. Creation and storage of heated or chilled water during times when there is abundant renewable energy in 
the grid and prices are low. Use stored energy during peak times and when renewable energy is low in  
production.

3. For SUNY Oswego, approximately what percentage of the campus heat demand is covered by Clusters C and 
W?

a. 75%

50
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