

Community Scale Electrification: Network Piping Distribution Options

- **Moderator:** Sue Dougherty / NYSERDA
 - Panel: Brian Urlaub / Salas O'Brien
 - Mike Kingsley / Ramboll
 - Steve Grgas / Wendel

THERMAL ENERGY NETWORKS • ROOM M1 • 4:00 - 5:00 PM

Sue Dougherty NYSERDA

• Funding support for large-scale thermal projects

Mike Kingsley

Ramboll

• Overview and explanation of distribution piping options

Brian Urlaub Salas O'Brien

• Project examples of different piping options

Steve Grgas Wendel

• Steam to low temp hot water piping conversions

Large-Scale Thermal Design Funding (PON 5614)

Sue Dougherty, Program Manager New Construction and Thermal Energy Networks Team

Large-Scale Thermal*

Provides heating, cooling, and hot water to a single building or multiple buildings using heat pumps and low-carbon thermal resources:

*Based on eligibility for NYSERDA's PON 5614 Large-Scale Thermal program

Funding for replicable large-scale thermal system **design** projects that significantly reduce GHG from heating, cooling, and hot water, primarily in existing buildings.

Single or Multiple Buildings	Minimum Conditioned Space (SF)	Maximum NYSERDA Funding Per Award	Required Proposer Cost-Share	
Multiple	250,000	Up to \$750,000 (existing buildings ¹)	50% of total project	
Single	100,000	Up to \$300,000 (new construction ²)	cost	

1. Total conditioned space \leq 50% new construction

2. Total conditioned space > 50% new construction

FlexTech (PON 4192)

- Support for technical services to perform energy studies and planning
 - Includes geothermal and large-scale thermal feasibility studies
- Open enrollment with minimum 50% proposer cost-share
 - Apply anytime
- Learn more by visiting the FlexTech website
- Find a FlexTech consultant

Large-Scale Thermal (PON 5614)

- Support for large-scale thermal design projects
- Competitive solicitation
- Round 3 proposals due 7/31/25 at 3pm ET
- Learn more by visiting PON 5614 solicitation page

NYSERDA

Thermal Energy Networks

Centralized ("4G" systems)

- Heat pump(s) at central plant produce hot/chilled water
- Hot/chilled water distributed to each building to provide heating/cooling and domestic hot water
- Heating only (2-pipe), cooling only (2-pipe), or heating and cooling (4-pipe)

Distributed ("ambient" temperature systems)

- Low temp ("ambient") water distributed to each building
- Heat pumps in each building provide heating/cooling and domestic hot water
- Heating and cooling (1-pipe or 2-pipe)

What's the Difference?!

Seinfeld scene. Accessed April 16, 2025. https://drivenets.com/

Community Scale Electrification Network Piping Distribution Options

NY-Geo – April 23, 2025 Michael Kingsley, Senior Technical Manager

Bright ideas. Sustainable change.

Thermal Energy Network (TEN) configurations

Descriptions Comparisons CLCPA Considerations

Evolution of TENs (district energy systems)

Designation	Description	
1 st Generation District	Steam	
Heating (1G)	Steam	
2 nd Generation District	Dressurized bet water $> 1009C(2129E)$	
Heating (2G)	Pressurized not water >100°C (212°F)	
3 rd Generation District	Hot water <100°C (212°F)	
Heating (3G)		l ou tomporaturas onabla
4 th Generation District	Low temperature hot water <70°C (158°F)	Low temperatures enable
Heating (4GDH)		
4 th Generation District	Low temperature hot water <70°C (158°F)	neat pumps – decarbonize
Heating & Cooling	Associated district cooling waste heat used as	neating
(4GDHC)	heat source	
5 th Generation District	Ambient Water or Glycol at 10-30°C (50-86°F)	
Heating & Cooling	serves as heating source or cooling sink for	
(5GDHC, Ambient Loop)	building heat pumps	Provide cooling as well as

heating

Typical characteristics of 4G and 5G TENs

Characteristic	4G Systems	5G Systems
Primary Concept	Fully centralized, low temperature hot water	Thermal source network distributes ambient
	to buildings; can be coupled with centralized	temperature fluid to building water-source
	district cooling	heat pumps that generate heating and cooling
Number of Pipes	2 (4GDH) or 4 (4GDHC)	1 or 2
Pipe Materials	Insulated Steel or High Temperature Polymer	Uninsulated Polymer
	(Heating)	
	Insulated Polymer (Cooling)	
Typical Temperature	Heating: 50-70°C (122-158°F)	10-30°C (50-86°F) Ambient Water or Glycol
Range	Cooling: 4.5-10°C (40-50°F)	(Heating Source or Cooling Sink)
Typical Delta-T	Heating: >22° C (>40°F)	3-8°C (5-15°F)
	Cooling: 6-11°C (10-20°F)	
Pipe Dimensions	Smaller diameter piping due to high delta T	Larger diameter piping due to low delta T

Performance aspects of 4G and 5G TENs

Performance Aspect	4G Systems	5G Systems
Energy Exchange	One-way thermal energy transferHeat recovery chillers (4GDHC)	 Thermal energy transfer between customers and with central thermal source
Thermal Sources	 LTHW from central heat pumps using low temperature sources (same as 5G) Proximity to the central plant affects feasibility High temperature waste heat can be used directly for heating 	 Ambient temperature sources can supply the ambient loop anywhere along the loop (even remote from the energy center) High temperature waste heat can be used but with a loss of exergy (availability)
Thermal Losses	 Thermal losses greatly reduced from previous generations due to lower operating temperatures 	Negligible thermal losses
Demand Flexibility, Redundancy & Resilience	 Central plant facilitates: Thermal energy storage Redundant equipment and backup sources (including non-electric sources) Dispatchable electric demand flexibility "Plug and play" new technologies 	 Building level systems are more difficult to apply demand flexibility approaches due to cost and space constraints Thermal mass of the distribution system will reduce peak demand compared to individual building heat pumps, but not dispatchable without storage or non- electric assets

Performance aspects of 4G and 5G TENs

Performance Aspect	4G Systems	5G Systems
Capital Cost	 Expensive energy center and distribution system Inexpensive building heat exchangers Retrofit to accept the district hot/chilled water can be a major cost Economies of scale for large-scale equipment Total system capacity requirement is reduced due to load diversity Easy application of base and peaking load technologies can reduce cost Thermal energy storage and backup systems can be more cost-effective at central plant 	 Less expensive energy center and distribution system Building heat pump costs, including: Small-scale equipment Full capacity (no network diversity) Electric service upgrades Interface to existing HVAC Difficult to apply base/peak load technologies and thermal energy storage (cost and space requirements)
Operational Cost	 Demand flexibility can shift electricity use to lower cost hours Electricity rates at central plant may be lower than at the buildings, reducing heat pump operating cost 	 Limited demand flexibility without storage or non-electric assets Negligible thermal losses from the distribution system

Electric grid evolution

NYS electric grid evolution

Climate Leadership and Protection Act (CLCPA)

- 70% of electricity from renewables by 2030
- 100% zero-emission electricity by 2040

Danish electric grid evolution example

Danish electric grid ~55% renewables in 2015

TEN adoption at scale

Electric grid upgrade requirements

Individual Heat Pumps

Maximum impact to the grid – upgrade and new capacity throughout

Conclusion

- •No one-size-fits-all solution
 - •4G, 5G, and individual HPs will have their applications
 - •Hybrid solutions are also possible
- Use holistic planning for best result
- Design solutions that work today while considering how the future grid and TEN implementation at scale affect each other

Thank you!

Michael Kingsley, PhD, PE Senior Technical Manager, Energy michael.kingsley@ramboll.com

Thermal Energy Networks (TEN); Project Examples – 4G & 5G

PRESENTED BY Brian Urlaub Director of Geothermal Operations Brian.Urlaub@salasobrien.com

Ball State, Muncie, IN

The largest US higher ed geothermal conversion.

105 kBtu/sf EUI

75,000 tons of MTCOe eliminated

5,600,000 campus gsf

Ball State University – Muncie, IN

- Centralized 4-Pipe Distribution
- Conversion Facts
 - 10,000 Tons Cooling
 - 152,000,000 BTU/HR Heating
 - 5,600,000 GSF Heating Conversion
 - 47 Building Heating Conversion
 - Includes 300,000 GSF of Expansion
 - 2 District Energy Stations
 - 150°F HWS
 - 2813 Vertical Bore Holes
- Campus Energy Use Intensity
 - Prior to Geothermal Conversion 175 Kbtu/SF/Yr
 - Fiscal Year 2013 / 2014 123 Kbtu/SF/Yr
 - Final Project Completion 105 Kbtu/SF/Yr

District Energy Station North 12,000 SF, Completed June 30, 2011 Projected LEED Silver

West Union, Iowa TEN Project

Downtown Business District:

- Common loop serves multiple buildings (54 stubbed, 14 in Service)
- 2-Pipe Ambient distribution system
- Unitary GSHP's serving each building
- Central pumping at each building and at each Ground Loop Heat Exchanger

Single Family New Construction - Toronto

TEN System Layout

- Single Pipe Ambient Loop
- 65 commercial and residential buildings
- 7 distributed GLHE's
- Single Owner/Campus
- Buildings are mostly 80+ years old
- Utilize buildings for housing infrastructure as much as possible

Ambient Geothermal Loop with multiple energy sources

Auditorium

Training Facility

Office Space

Dining Facility

Data Center

Thank You!

Contact Information | brian.urlaub@salasobrien.com

Steam to Low-Temperature Hot Water Conversions

Steve Grgas Senior Project Development Engineer

wendel

Agenda

Benefits of Converting Steam to LTHW

Key Considerations

Financial Strategies

Challenges

Case Studies

Question & Answer

Benefits of Converting to LTHW Systems

- Energy Efficiency Improvements:
 - LTHW systems reduce thermal losses, leading to significant energy savings
 - Closed-loop nature minimizes water and energy waste
- Operational Cost Reductions:
 - Substantial reduction in maintenance and distribution costs
- Infrastructure Modernization:
 - Replace aging steam infrastructure, enhancing system reliability
 - Improved control over distribution system

Key Considerations for Conversion

Assessment of Existing Infrastructure:

- Evaluate condition & capacity of current systems
- Consider reusing existing infrastructure or upgrading/replacing equipment
- Temperature Requirements:
 - Analyze building heating demands for LTHW system compatibility
 - Possible need for building envelope improvements or HVAC system modifications
- Phased Implementation Approach:
 - Incremental retrofits to spread costs over time and minimize disruption
 - Prioritize buildings/zones based on energy use, infrastructure condition, and occupancy

Financial Strategies for Cost-Effective Conversion

- Life-Cycle Cost Analysis:
 - Compare initial costs with long-term savings in energy & maintenance
 - Include potential future costs related to carbon pricing and regulations
- Leveraging Incentives and Funding:
 - Explore available grants, rebates, and financial incentives for energy efficiency and decarbonization
 - Engage stakeholders for funding and support
- Operational Savings Reinvestment:
 - Reinvest savings from reduced costs into further energy efficiency projects
 - Offset initial capital expenditures with savings

Challenges and Mitigation Strategies

Technical Challenges:

 Address compatibility issues with targeted upgrades & retrofits

Financial Constraints:

 Phased implementation plans & securing external funding to manage upfront costs

Stakeholder Engagement:

 Communicate benefits and longterm savings to stakeholders for support

Case Studies

PRIVATE UNIVERSITY

PROJECT | Laboratory Electrification Pilot

SCOPE OF WORK OVERVIEW

- 210 Ton Heat Pump
- Electric Autoclaves
- Ultrasonic Humidification
- Wellfield

DESIGN CONSIDERATIONS

- 140F Hot Water
- Electrical Needs
- HW System Stress Test

wendel

TOTAL COSTS | \$13,000,000

PROPOSED SYSTEM

BROOKLYN MUSEUM

PROJECT | Deep Energy Retrofit

SCOPE OF WORK OVERVIEW

- 150 Ton Heat Pump
- Steam-to-HW Conversion
- New Condensing Boilers
- DHW Heat Pumps Energy Efficiency Measures

DESIGN CONSIDERATIONS

- 140F Hot Water •
- Condensing Boilers Peaking/Resilience HW System Stress Test Adaptable to Long Term Options ٠
- ٠

TOTAL COSTS | \$28,600,000

STATE GOVERNMENT

MASTER BUILDER

SIMULTANEOUS HEATING/COOLING TREND ANALYSIS

Reheat/Perimeter Radiation Capacity (MBH)

Chiller Plant Capacity (MBH)

EEMs

EEM 4.1 Direct Digital Controls Conversion **EEM 4.2 HVAC Controls Optimization EEM 4.3 Unoccupied Shutdown** EEM 4.4 Morning/Afternoon Warmup/Cooldown EEM 4.5 Discharge Air Temperature Reset EEM 4.6 Static Pressure Reset EEM 4.7 Enthalpy Economizer (Humidity) EEM 5.2 Water Side Economizer & Optimization EEM 5.3 Heat Recovery Chiller / Heat Pump EEM 6.2 Boiler and Steam to HW Conversion EEM 7.3 Single Zone Variable Volume **EEM 9.4 RCx and Advanced Analytics** EEM 11.1 Heat Pump Domestic Hot Water EEM 13.2 Solar Photovoltaic Array EEM 14.1 Misc. Updates to EEM 4.6, 4.7, and 5.2

Total Cost (M&L w/Bonds): \$28,600,000

Total NG Savings: 444,659 therms 🦊

Total GHG Savings: 3,231 MT CO2 👢

\$/GHG Saved: \$8,849/MT CO2

Conclusion

- Recap of LTHW system benefits: energy efficiency, cost savings, and infrastructure modernization
- Emphasis on the need for thorough planning, financial analysis, and stakeholder engagement
- Encourage campuses/communities to consider LTHW conversion as a sustainable, financially responsible move

Thank you.

MULTISTACK

wendel

architecture | engineering | energy efficiency | construction management

Steve Grgas, PE Senior Project Development Manager, Energy sgrgas@wendelcompanies.com wendelcompanies.com

Community Scale Electrification: Network Piping Distribution Options

- **Moderator:** Sue Dougherty / NYSERDA
 - Panel: Brian Urlaub / Salas O'Brien

Mike Kingsley / Ramboll

Steve Grgas / Wendel

THERMAL ENERGY NETWORKS • ROOM M1 • 4:00 - 5:00 PM