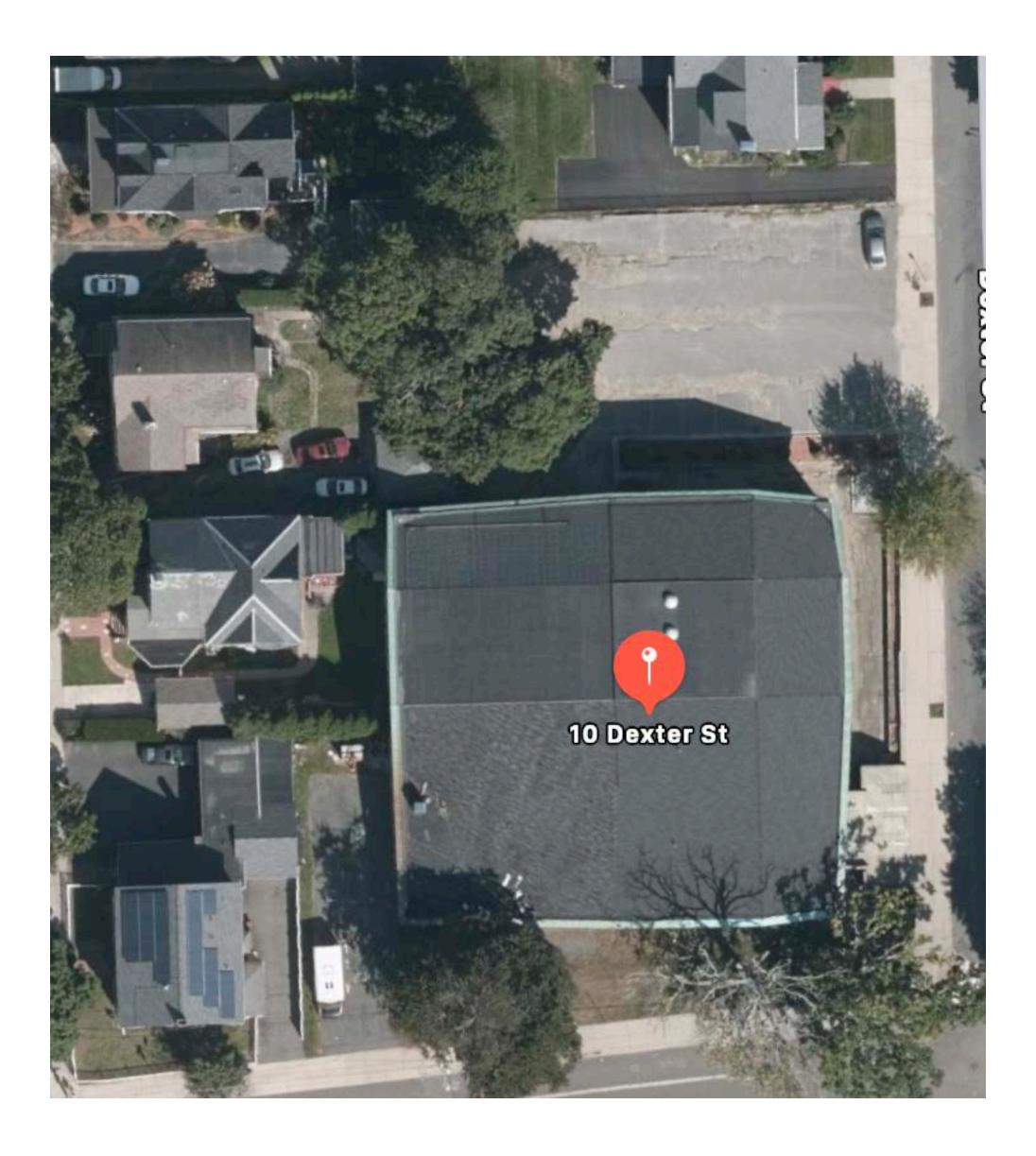
NY-GEO 2020 Top Job Competition April 2021

Project Site and Existing Conditions



Building Exterior

Building Statistics

- Urban Lot about 0.8 Acres
- House of Worship
- Building Areas/Uses:
 - Sanctuary
 - Social Hall
 - Mikvah (Ritual Bath)
 - Library
 - Classrooms
 - Activity Rooms
 - Kitchen

Existing HVAC

- Three AHUs: 1 x 40-ton; 2 x 7.5-ton (one long defunct)
- Original 1960 Boiler (originally fuel oil converted to Fossil Fuel Gas)
- Chilled water via outside chiller
- AHUs: Provide heating with boiler water and cooling with chiller water.

Existing AHUS

Project Goals

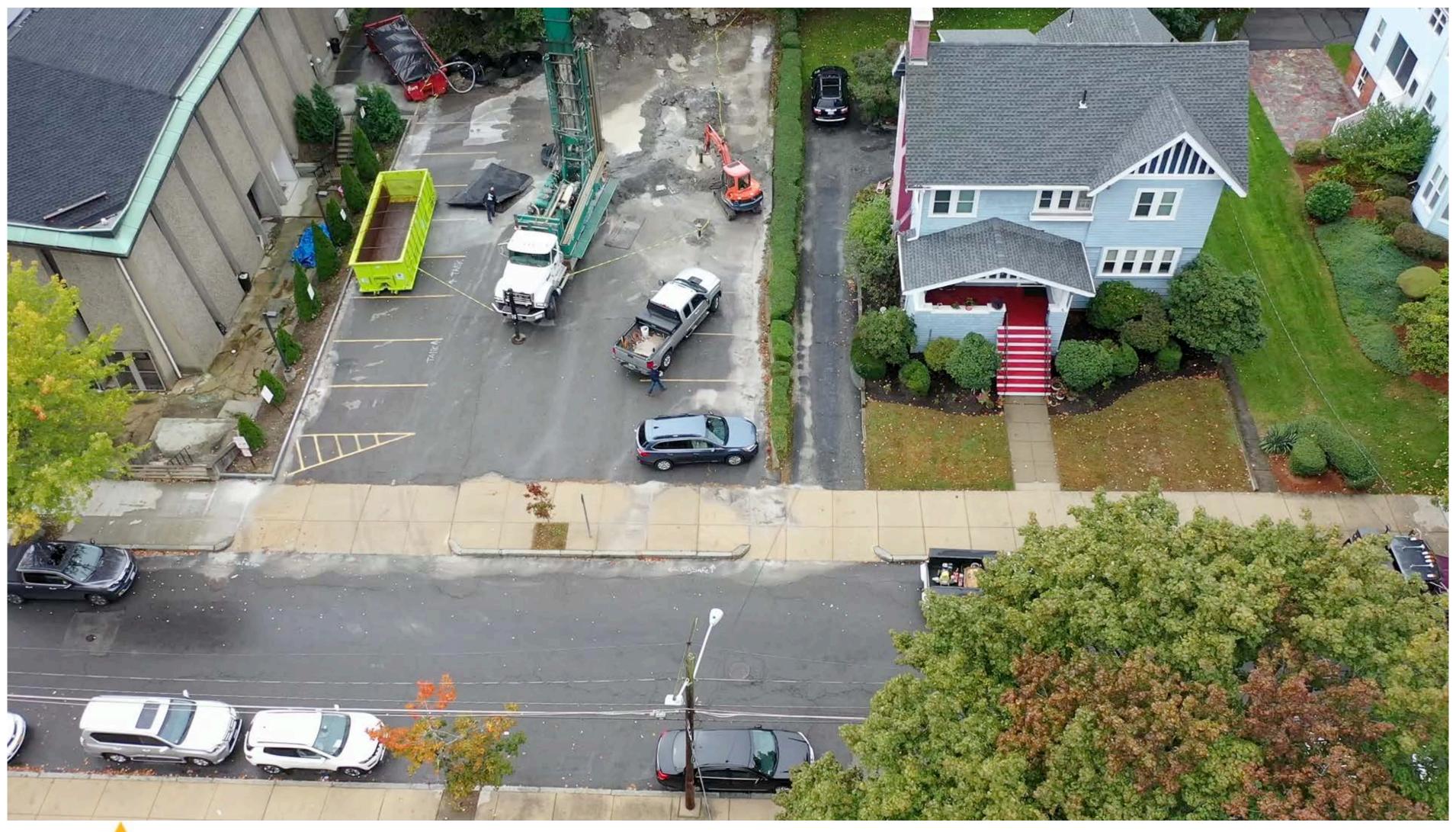
Project Goals

- → Replace Aging Equipment
- → Make Energy Choices Consistent with Values
- → Reduce GHG Emissions
- →Provide Better Conditioning During Sabbath and Holidays
- → Adjust for Varied Occupancy
- →Improve Comfort and Zoning
- → Lower Operating Cost

- → Heating and Cooling Load Analysis
 - Manual N by Achieve
 - Alternate method by Mechanical Engineers
 - Adjust final for differences in methods
- →Evaluate Equipment Options
 - High efficiency/Variable Speed
 - Remote Monitoring
 - Programmability

- ⇒Formation Thermal Conductivity Test
 - FTC: 1.63 Btu/hr.-ft-F
 - Therm. Diffusivity 1.25 Ft²/day
- → Mechanical Engineering Design
 - Piping, Ducting, Fresh Air

- →Estimate Value of Financial Incentives
 - ▶ State Rebate: \$196,000
 - Renewable Energy Credits: Market Driven



Installation

VCL Construction

VCL Construction

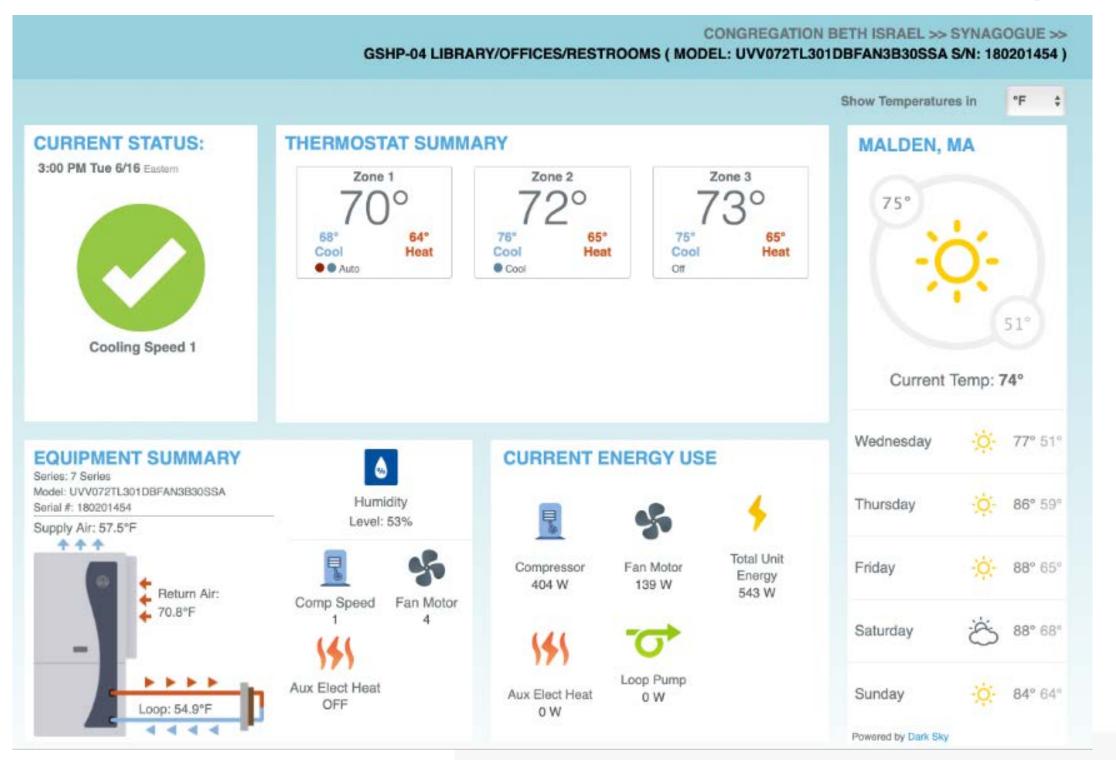
Piping and Circulation

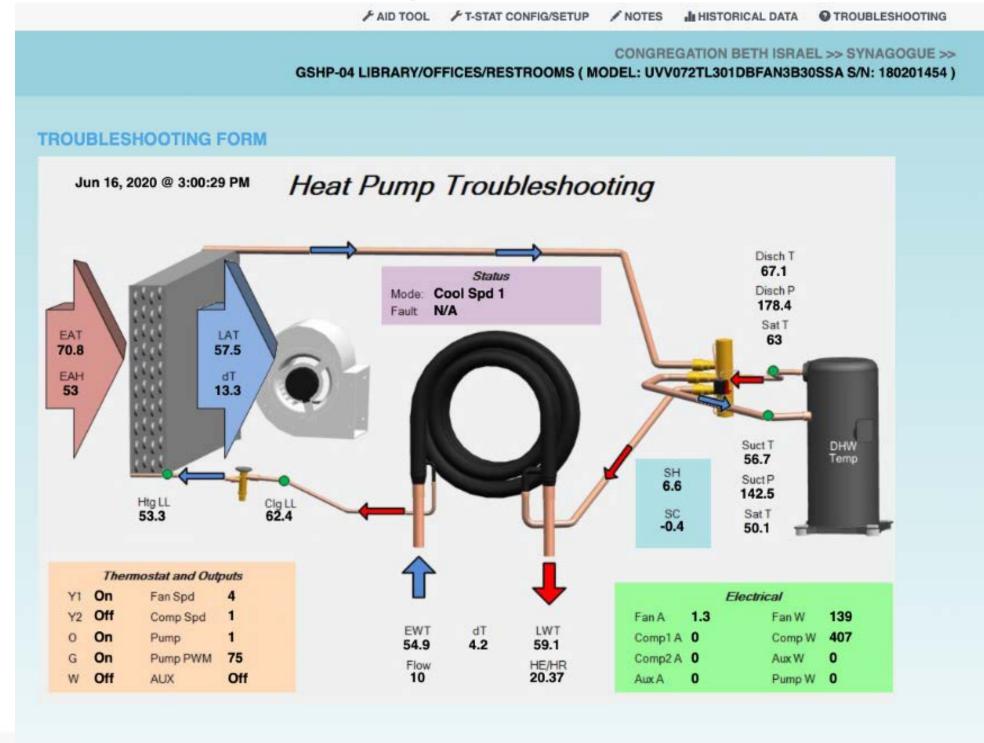
- Piping
 - ▶ 1.25" Loops; 2" to manifold; 4" building loop
 - ▶ Piping configured to maintain required separation from Mikvah and its water source.

Typical GSHPs

Typical Piping

Circulation System




- Web-based control
 - Each GSHP has a WaterFurnace Aurora Web Link
 - All equipment accessible via WaterFurnace Symphony

Remote Monitoring, Control and Configuration

	09-0	02-2016			G) 1	12:0	0	Ove	rview	1	Gra	ph -		Faul	ts																			Pre	v	Nex	đ
			Water and Air						Refrigera			ation							Control Inputs															Control (utputs			
Γime	Fault Code	Mode	EWT	LWT [°F]	Water Flow [gpm]	OAT	EAT [°F]		HE/HR	1 - 1 - 1		SH [°F]	Disch Press [psig]	LL	Clg LL [°F]	Htg/Clg SC [°F]	Disch Temp [°F]		Y1	Y2	W	o G	DI	н	Room Temp [°F]	Room Setpoint	Dehumid Setpoint [%]	Humid Setpoint [%]	Room Humid [%]	HW Temp [°F]	HW Setpoint [°F]			Con Spe CC [0-1		d		Fan Sper [0-12
2:00:01		Cool Spd 1	74.6	70 7 81	6.1	0.0	75.0	53.4	18.934	139.0	48.2	13.5	250.3	52.7	81.1	-3.2	111.8	61.9	On	Off	Off	0n 0	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	33010	51.1	On 1	1			3
2:00:11		Cool Spd 1							19.846				250.2				111.7					On O				74.0	50	45	53	0.0	130.0		51.2		1		100 CC	3
2:00:21	0	Cool Spd 1	74.6	81.2	6.3	0.0	75.0	53.2	20.166	139.0	48.4	11.9	249.7	52.9	81.1	-3.1	111.5	60.4	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.6	51.3	On 1	1	On	On	3
2:00:31	0	Cool Spd 1	74.6	81.2	6.1	0.0	75.0	53.1	19.526	139.0	48.4	11	250.5	53.1	81.1	-2.7	111.3	59.5	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.6	51.3	On 1	1	On	On	3
2:00:41	0	Cool Spd 1	74.6	81.2	5.3	0.0	75.0	52.9	16.965	139.0	48.2	7.9	250.7	53.1	81.2	-3	111	56.3	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.7	51.4	On 1	1	On	On	3
2:00:51	0	Cool Spd 1	74.6	81	6.1	0.0	75.0	52.5	18.934	139.0	48.2	8.1	250.4	53.1	81.2	-3	110.7	56.5	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.7	51.3	On 1	1	On	On	3
2:01:01	0	Cool Spd 1	74.6	81.2	6.2	0.0	75.0	52.5	19.846	139.0	48	8.1	250.8	53.1	81.3	-3	110.6	56.1	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.8	51.4)n 1	1	On	On	3
2:01:11	0	Cool Spd 1	74.6	81	6.2	0.0	75.0	52.7	19.245	139.0	48	7.9	251	53.1	81.1	-3	110.5	55.9	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.8	51.4	On 1	1	On	On	3
2:01:21	0	Cool Spd 1	74.6	81.2	6.2	0.0	75.0	52.5	19.846	138.0	47.8	7.6	251.1	53.1	81.1	-3.1	110.3	55.4	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.7	51.3	On 1	1	On	On	3
2:01:31	0	Cool Spd 1	74.6	81.2	6.2	0.0	75.0	52.2	19.846	137.0	47.5	7.4	251.4	52.9	81.2	-3.1	110.2	55	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.8	51.2	On 1	1	On	On	3
2:01:41	0	Cool Spd 1	74.6	81.2	6.2	0.0	75.0	52.3	19.846	137.0	47.5	7.2	250.9	52.7	80.8	-3.5	110.1	54.9	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.6	51.1)n 1	1	On	On	3
2:01:51	0	Cool Spd 1	74.6	81.4	6.1	0.0	75.0	52.3	20.118	136.0	47.1	7.6	251.6	52.7	80.5	-3.7	110.1	54.9	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.4	51.1	On 1	1	On	On	3
2:02:01	0	Cool Spd 1	74.6	81.4	6.2	0.0	75.0	52.3	20,448	135.0	46.8	8.3	251.1	52.4	80.2	-4.2	110.2	55	On	Off	Off	On O	n Of	f Off	75.0	74.0	50	45	53	0.0	130.0	82.1	50.8	On 1	1	On	On	3

F AID TOOL

- Ducted Fresh Air
 - Modulating dampers controlled based on CO₂ Sensors
 - A base level of fresh air adjusts upward based on occupancy
 - No more cold air pouring down the stairwell

- Engineered fire stopping for safety
 - Penetrations and conduits sealed to block fire spread
 - We likely improved fire resistance of building since it was 1960 construction

Project Results

Resulting Improvements

- → Modern Temperature Control with 16 zones.
- →Programmable controls allow for planned conditioning during Services and Events
- →Seamless Fresh Air System
- → Much quieter HVAC
- → Greenhouse Gas Emissions Greatly Reduced
- →Operating cost lower with better comfort

Why is this the TOP JOB?

- Efficiency
 - **M**Highest COP GSHPs
 - **ECM** Fan Control
 - **M**Highly Efficient Circulation
 - **Programmability**
- Workmanship
 - **Durable HDPE throughout**
 - Professional Insulation and Labeling
 - Care taken to protect the Mikvah

- **Accessibility**
 - Remote Access and Control
 - Data every 10 seconds
 - Programming for Services and Events
- Performance
 - Improved Comfort
 - Lower Operating Cost
 - Greatly reduced GHG Emission
 - System Longevity

Contact Information:

Larry Lessard

LLessard@AchieveRenewable.com

978-338-5548 x102

