NY-GEO 2023 • NY-GEO 2023 • NY-GEO 2023 • NY-GEO 2023

Regional Networked Geothermal Initiatives

Presented Live at the NY-GEO 2023 Conference Albany, New York on April 26, 2023

The Northeast's Premier Heat Pump Conference • www.ny-geo.org

A BIG THANK YOU to This Year's Sponsors!

We Couldn't Do It Without You! • www.ny-geo.org

EVERS=URCE ENERGY

Eversource Networked Geothermal Update

Eric Bosworth- Senior Program Manager

eric.bosworth@eversource.com

Pilot Project Overview

 Project began in 2021 with site selection. Commissioning and operation targeted for later this year

 One pipe system of approximately 1 mile of main

- 40 buildings with 150 individual customers throughout
- 113 boreholes to provide capacity of approximately 375 tons of load

Design Challenges

- Additional load requests
- Electric service requirement

National Grid

NORMANDY ROAD PARKING LOT 2

NORMANDY ROAD PARKING LOT 1

5

Construction RFP

Borefield	 Borehole Drilling Central Pump House Control and Monitoring
Distribution System	 Main Installation Service Installation Heat Exchangers
Building Conversions	 Weatherization Ducting and Electrical Upgrades Heat Pump Installation
O&M	 Regular Maintenance Emergency Repairs

Project Timeline

End of 2021	Eversource selected the pilot site	
Spring 2023	Construction is scheduled to begin	
Mid-to-late 2025	Total pilot program duration (two heating and cooling seasons)	
	*	STATISTICS

1

7

Note: Timing of construction and installation activities will be sitespecific. (Approximately one year.)

What Does Success Look Like?

Success Factors	Data Points to Collect
Validated installation and operating costs	System installation costsOngoing O&M costs
Customer acceptance of technology	Customer Satisfaction surveysCustomer comfort
Environmental Benefits	Emission reductionsSystem efficiency
Technology performance	 System performance Changes in customer energy consumption
Cost savings	• Changes in customer heating and cooling costs

Con Edison

Utility Thermal Energy Networks NYGEO Conference 4/26/23

- Utility Thermal Energy Networks and Jobs Act (UTENJA) Labor Language
- UTEN Defined
- Proposed Pilot Projects

UTILITY THERMAL ENERGY NETWORKS AND JOBS ACT

Legislation

Public Service Law was amended, removing legal barriers to allow utilities to own, operate and maintain thermal energy networks in their service territories.

What are the primary drivers?	 Climate Leadership and Community Protection Act (CLCPA) Decarbonize Buildings Efficiently (reduce impact to electric system) Support Disadvantaged Communities Job Creation and Workforce Development
What's a "thermal energy network?	 "Piped noncombustible fluids used for transferring heat in and out of buildings for the purpose of eliminating any resultant on-site greenhouse gas emissions of all types of heating and cooling processes, including, not limited to, comfort heating and cooling, domestic hot water, and refrigeration".
To whom does the new legislation apply?	 Gas only utilities Combination electric and gas utilities
What are the requirements?	 Each utility propose 1 to 5 Pilot Projects At least one in a disadvantaged community (DAC)

Thermal Energy Network Defined

CECONY THERMAL ENERGY NETWORKS PILOT PROJECTS

Typical UTEN Network Design

CECONY THERMAL ENERGY NETWORKS PILOT PROJECTS

Proposed Projects

Project A: High Rise in Urban Area

- High-rise mixed-use buildings in Manhattan
- Leverage in-building technologies to share waste heat

Project B: Large Residential in Urban Area

- Mid-rise multifamily residential
- Data Center waste heat energy source

Project C: Low Rise Suburban Neighborhood

- 70+ buildings including 1-3 family, religious, recreation center, fire station & medical offices
- Several bore fields throughout network area

Regional Networked Geothermal / Thermal Energy Network Initiatives

April 2023

nationalgrid

Summary

	MA	NY
Cost	\$15.6M	\$180.2M
Capacity	>200 tons	3,720 ton
Area	TBD	2,134,000 ft ²
Status	In Development	Pending Regulatory Review

MA Geothermal Demonstration Program Summary

Program Overview

- Operating Company: Boston Gas Company
- Approved Dec 2021 (Docket # 21-24)
- Program Years: 2022 2026
- Approved Budget: \$15.6 million
- Estimated Number of Customers: 100-200 (20-40 heat pumps or 100-200 tons per installation)

Project Selection Requirements

- Across the portfolio of installations, the following conditions must be met:
 - Connecting facilities with diverse load profiles
 - Alternative to LPP replacement
 - Managing gas system constraints
 - Supporting low-income (LI) and environmental justice (EJ) communities

MA Pilot - Lowell

Aiming to convert several types of buildings:

- Duplexes and triplexes
- Multi-family buildings
- Commercial office space

Parameter	Value
Cost	TBD
Capacity	TBD
Area	TBD
GHG Reductions	TBD

KEDLI Pilot – Campus Setting

Planning to convert six buildings:

- Heating, Cooling, and DHW
 (2) High-rise residential buildings
- Heating and Cooling Only
- (2) Townhomes
- (1) Wellness center
- (1) Entertainment center

Parameter	Value
Cost	\$33.469M
Capacity	650 tons
Area	200,000 ft ²
GHG Reductions	-177 MT CO ₂ e / year

KEDNY Pilot – NYCHA Vandalia Ave.

Aiming to convert several types of buildings:

- DHW, Heating, and possibly cooling
- (2) High-rise apartment buildings
- (1) Senior center
- Heating & Cooling
- (1) Commercial strip mall

Heating and Cooling	
Parameter	Value
Cost	\$67.7M
Capacity	520 Tons
Area	417,000 ft ²
GHG Reductions	-308 MT CO ₂ e / year

KEDNY Pilot – Options and costs

Heating Only	Heating & Cooling
\$38.7M	\$67.7M
 All work done in mechanical room Heat distributed via existing systems Nominal Electrical Upgrades Would require an alternative approach to providing cooling 	 Each of the 293 apartments would need to be renovated and have equipment installed Electrical service upgrades to each apartment Additional risers to each apartment to distribute chill water

NMPC Pilot (1) – City of Troy

National Grid will construct, own, and operate the distribution system Troy LDC. will construct, own, and operate the borefield

• Convert 9 commercial buildings

Parameter	Value
Cost	\$12.270M
Capacity	550 tons
Area	317,000 ft ²
GHG Reductions	-774.7 MT CO ₂ e / year

NMPC Pilot (2) – City of Syracuse

- Connecting to the Metropolitan Wastewater Treatment Plant as a thermal resource
- Connecting 14 new construction buildings in the Inner Harbor Area

A large aquarium Office space Mixed Use Commercial/Residential

Parameter	Value
Cost	\$66.754M
Capacity	2,000 tons
Area	1,200,000 ft ²
GHG Reductions	-1,417 MT CO ₂ e / year

Owen Brady-Traczyk

Director, Future of Heat Solutions Owen.brady@nationalgrid.com

nationalgrid

Utility Geothermal Development in Vermont

2023 NY Geo Conference

4/26/23

Richard Donnelly, Director Energy Innovation

Hired consultant
A line at the door
Meeting developer timelines
Ideal project? Raising the flag?
Regulatory perspective
Eureka!?

- Existing building on campusAlready deploying WSHPs
- Failed cooling tower
- Engaged customer
- Great learning opportunity
- Potential for geo network

C:

Denied by regulators

8

Feasibility study performed:

- 150 Units, 50% affordable housing
- Developer to own and maintain HVAC equipment
- VGS to own and maintain external loop
- Developer's priorities: minimize OpEx costs
- Competing against NG (new pipe on the street)
- CapEx and OpEx costs compared between baseline systems and geothermal
- With VGS as a partner, OpEx cost would have more than doubled even with IRA incentives
- If developer did project alone, they would have lower CapEx and OpEx

- Commitment to geothermal
- Collaboration with NG Utilities
- Discussing development outside our service area with regulators

- Engaging experts
- Exploring alternative business models
- Tax-equity partnerships
- Master service agreements

Thank you!

Morgan Hood | mhood@vermontgas.com Richard Donnelly | rdonnelly@vermontgas.com

